首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA stable-isotope probing   总被引:3,自引:0,他引:3  
Stable-isotope probing is a method used in microbial ecology that provides a means by which specific functional groups of organisms that incorporate particular substrates are identified without the prerequisite of cultivation. Stable-isotope-labeled carbon (13C) or nitrogen (15N) sources are assimilated into microbial biomass of environmental samples. Separation and molecular analysis of labeled nucleic acids (DNA or RNA) reveals phylogenetic and functional information about the microorganisms responsible for the metabolism of a particular substrate. Here, we highlight general guidelines for incubating environmental samples with labeled substrate and provide a detailed protocol for separating labeled DNA from unlabeled community DNA. The protocol includes a modification of existing published methods, which maximizes the recovery of labeled DNA from CsCl gradients. The separation of DNA and retrieval of unlabeled and labeled fractions can be performed in 4-5 days, with much of the time being committed to the ultracentrifugation step.  相似文献   

2.
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.  相似文献   

3.
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in activated biosludge were identified using DNA-based stable isotope probing. Besides the well-known PHE degraders Burkholderia, Ralstonia, Sinobacteraceae and Arthrobacter, we for the first time linked the taxa Paraburkholderia and Kaistobacter with in situ PHE biodegradation. Analysis of PAH-RHDα gene detected in the heavy DNA fraction of 13C-PHE treatment suggested the mechanisms of horizontal gene transfer or inter-species hybridisation in PAH-RHD gene spread within the microbial community. Additionally, three cultivable PHE degraders, Microbacterium sp. PHE-1, Rhodanobacter sp. PHE-2 and Rhodococcus sp. PHE-3, were isolated from the same activated biosludge. Among them, Rhodanobacter sp. PHE-2 is the first identified strain in its genus with PHE-degrading ability. However, the involvement of these strains in PHE degradation in situ was questionable, due to their limited enrichment in the heavy DNA fraction of 13C-PHE treatment and lack of PAH-RHDα gene found in these isolates. Collectively, our findings provide a deeper understanding of the diversity and functions of indigenous microbes in PHE degradation.  相似文献   

4.
The active bacterial community able to utilize benzoate under denitrifying conditions was elucidated in two coastal sediments using stable-isotope probing (SIP) and nosZ gene amplification. The SIP method employed samples from Norfolk Harbor, Virginia, and a Long-Term Ecosystem Observatory (no. 15) off the coast of Tuckerton, New Jersey. The SIP method was modified by use of archaeal carrier DNA in the density gradient separation. The carrier DNA significantly reduced the incubation time necessary to detect the (13)C-labeled bacterial DNA from weeks to hours in the coastal enrichments. No denitrifier DNA was found to contaminate the archaeal (13)C-carrier when [(12)C]benzoate was used as a substrate in the sediment enrichments. Shifts in the activity of the benzoate-utilizing denitrifying population could be detected throughout a 21-day incubation. These results suggest that temporal analysis using SIP can be used to illustrate the initial biodegrader(s) in a bacterial population and to document the cross-feeding microbial community.  相似文献   

5.
DNA稳定同位素探针 (DNA-SIP) 是一种新兴的技术,通过将同位素稳定结合到特定的底物来确定环境中微生物的作用。DNA-SIP与宏基因组学结合可以让某些微生物的特性与其特殊新陈代谢联系在一起,不仅可以从宏基因组库里检测到低含量的微生物,而且加速了对新的酶类和其他生物活性物质的发现。以下总结了SIP-宏基因组学技术的原理、应用及研究进展,并讨论了其在环境微生物学和生物技术的应用前景。  相似文献   

6.
The microbial decomposition of plant residue is a central part of the carbon cycle in soil ecosystems. Here, we explored the microeukaryotic community responsible for the uptake of plant residue carbon in a rice field soil through DNA-based stable-isotope probing (SIP) using dried rice callus labelled with (13) C as a model substrate. Molecular fingerprinting with PCR-DGGE showed that the total eukaryotic community in soil under drained (upland) conditions distinctly changed within 3 days after the callus was applied and stable thereafter. The predominant group of eukaryotes that incorporated callus carbon were fungi affiliated with the Mucoromycotina (Mortierella), Ascomycota (Galactomyces, Eleutherascus, Gibberella and Fusarium) and Zoopagomycotina (Syncephalis). 'Fungus-like' protists such as Pythium (stramenopiles) and Polymyxa (Cercozoa) were also involved in carbon flow from the callus. Some of these fungi and 'fungus-like' protists took up soil organic matter with time, which suggested a priming effect of the callus on the eukaryotic community. Our results demonstrated the usefulness of SIP not only to trace the carbon flow from fresh organic matter but also to study the effect of fresh organic matter on the utilization of soil organic matter by the microbial community.  相似文献   

7.
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

8.
The active population of low-affinity methanotrophs in a peat soil microcosm was characterized by stable-isotope probing. "Heavy" (13)C-labeled DNA, produced after microbial growth on (13)CH(4), was separated from naturally abundant (12)C-DNA by cesium chloride density gradient centrifugation and used as a template for the PCR. Amplification products of 16S rRNA genes and pmoA, mxaF, and mmoX, which encode key enzymes in the CH(4) oxidation pathway, were analyzed. Sequences related to extant type I and type II methanotrophs were identified, indicating that these methanotrophs were active in peat exposed to 8% (vol/vol) CH(4). The (13)C-DNA libraries also contained clones that were related to beta-subclass Proteobacteria, suggesting that novel groups of bacteria may also be involved in CH(4) cycling in this soil.  相似文献   

9.
A novel approach was developed to follow the successive utilization of organic carbon under anoxic conditions by microcalorimetry, chemical analyses of fermentation products and stable-isotope probing (SIP). The fermentation of (13) C-labeled glucose was monitored over 4 weeks by microcalorimetry in a stimulation experiment with tidal-flat sediments. Based on characteristic heat production phases, time points were selected for quantifying fermentation products and identifying substrate-assimilating bacteria by the isolation of intact ribosomes prior to rRNA-SIP. The preisolation of ribosomes resulted in rRNA with an excellent quality. Glucose was completely consumed within 2 days and was mainly fermented to acetate. Ethanol, formate, and hydrogen were detected intermittently. The amount of propionate that was built within the first 3 days stayed constant. Ribosome-based SIP of fully labeled and unlabeled rRNA was used for fingerprinting the glucose-degrading species and the inactive background community. The most abundant actively degrading bacterium was related to Psychromonas macrocephali (similarity 99%) as identified by DGGE and sequencing. The disappearance of Desulfovibrio-related bands in labeled rRNA after 3 days indicated that this group was active during the first degradation phase only. In summary, ribosome-based SIP in combination with microcalorimetry allows dissecting distinct phases in substrate turnover in a very sensitive manner.  相似文献   

10.
Inferences about which microorganisms degrade polycyclic aromatic hydrocarbons in contaminated soils have largely been obtained using culture-based techniques, despite the low percentage of microorganisms in soil that are believed to be culturable. We used a substrate-responsive direct viable count method to identify and quantify potential polycyclic aromatic hydrocarbon-degrading bacteria in a soil containing petroleum wastes. Bacteria were extracted and their response to substrates determined in the presence of DNA gyrase inhibitors, which cause viable and active cells to elongate. When yeast extract, a widely used carbon source, was added as a growth substrate, together with nalidixic acid, piromidic acid and ciprofloxacin, a significant increase in elongated cells to 47%, 37% and 22%, respectively, was observed within 24 h. With pyrene as the main substrate, 10 mg L(-1) of nalidixic acid or piromidic acid caused 18-22% and 8-12%, respectively, of the cells to elongate within 24 h; whereas the effect of 0.5 mg L(-1) ciprofloxacin was not significant until 53 h later. Enlarged cells were identified and enumerated by fluorescent in situ hybridization, using Alpha-, Beta- and Gammaproteobacteria, and domain Bacteria-specific probes. The Bacteria-specific probe detected 35-71% of the total microorganisms detected by the DNA-binding dye 4,6-diamidino-2-phenylindole. Initially, 44%, 13% and 5% of the total bacteria in the soil extract were Alpha-, Beta- and Gammaproteobacteria, respectively. Without pyrene or a gyrase inhibitor, these subgroups decreased to 30% of the total population but were predominant with piromidic acid or unchanged with ciprofloxacin when pyrene was the main substrate. The proportion of elongated Alpha- and Betaproteobacteria (potential pyrene degraders) increased significantly (P<0.05). This approach links phylogenetic information with physiological function in situ without the conventional cultivation of bacteria and can be used to probe and enumerate degradative groups at even a finer level of discrimination.  相似文献   

11.
Summary DNA-based stable-isotope probing (SIP) using 13C-labeled growth substrates as bait is a powerful tool for the selective DNA isolation from microorganisms that are actively involved in consuming these substrates. To enhance the detection frequency of target genes in screens for new natural products, we have combined for the first time DNA-based SIP with the construction of metagenomic libraries. To isolate genes encoding coenzyme B12-dependent glycerol dehydratases an enrichment of glycerol-fermenting microorganisms from a sediment sample of the Wadden Sea was performed by using glycerol–13C3 as sole carbon source. Subsequently, the 13C-labeled DNA was separated from the naturally abundant 12C-DNA by density centrifugation, and used for library generation. Screening of the constructed libraries for the target genes revealed that the gene detection frequencies employing DNA-based SIP for enrichment of genomes harboring dehydratase genes were 2.1- to 3.8-fold higher than those recorded by using a traditional step with unlabeled glycerol for enrichment.  相似文献   

12.
[13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the "heavy" and "light" DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.  相似文献   

13.
Methane is used as an alternative carbon source in the denitrification of wastewater lacking organic carbon sources because it is nontoxic and may be efficiently produced by anaerobic biological processes. Methane-dependent denitrification (MDD) in the presence of oxygen requires the co-occurrence of methanotrophy and denitrification. Activated sludge was incubated with 13C-labeled methane in either a nitrate-containing medium or a nitrate-free medium. Then, bacterial and methanotrophic populations were analyzed by cloning analysis and terminal restriction fragment length polymorphism analysis targeting 16S rRNA gene and cloning analysis targeting pmoA genes. DNA-based stable-isotope probing (DNA-SIP) analysis of the 16S rRNA gene revealed an association of the Methylococcaceae and the Hyphomicrobiaceae in a MDD ecosystem. Furthermore, supplementation of nitrate stimulated methane consumption and the activity of methanotrophic populations (i.e. the stimulation of uncultivated relatives of distinct groups of the Methylococcaceae). In particular, uncultured type-X methanotrophs of Gammaproteobacteria were dominant when nitrate was added, i.e. in the MDD incubations. On the other hand, most methanotrophs (types I, II, and X methanotrophs) were found to have been labeled with 13C under nitrate-free conditions. This DNA-SIP study identifies key bacterial populations involved in a MDD ecosystem.  相似文献   

14.
Plant residues, mainly made up of cellulose, are the largest fraction of organic carbon material in terrestrial ecosystems. Soil microorganisms are mainly responsible for the transfer of this carbon to the atmosphere, but their contribution is not accurately known. The aim of the present study was to identify bacterial populations that are actively involved in cellulose degradation, using the DNA-stable isotope probing (DNA-SIP) technique. 13C-cellulose was produced by Acetobacter xylinus and incubated in soil for 7, 14, 30 and 90 days. Total DNA was extracted from the soil, the 13C-labelled (heavy) and unlabelled (light) DNA fractions were separated by ultracentrifugation, and the structure of active bacterial communities was analysed by bacterial-automated ribosomal intergenic spacer analysis (B-ARISA) and characterized with denaturing gradient gel electrophoresis (DGGE). Cellulose degradation was associated with significant changes in bacterial community structure issued from heavy DNA, leading to the appearance of new bands and increase in relative intensities of other bands until day 30. The majority of bands decreased in relative intensity at day 90. Sequencing and phylogenetic analysis of 10 of these bands in DGGE profiles indicated that most sequences were closely related to sequences from organisms known for their ability to degrade cellulose or to uncultured soil bacteria.  相似文献   

15.
16.
High diversity in DNA of soil bacteria   总被引:65,自引:0,他引:65  
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The macrofungus, Tricholoma lobynsis, was chosen to remedy Zn–Cd–Pb contaminated soil. To enhance its metal-extracting efficiency, two heavy metal resistant microbes M6 and K1 were applied owing to their excellent abilities to solubilize heavy metal salts. The two isolated microbial strains could also produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate, but neither of them showed 1-aminocyclopropane-1-carboxylate deaminase activity. The strains M6 and K1 were identified as Serratia marcescens and Rhodotorula mucilaginosa based on 16S rDNA and ITS sequence analysis respectively. Pot experiment showed that spraying to T. lobynsis-inoculated soil with M6 and K1 respectively could increase total Cd accumulations of this mushroom by 216 and 61%, and Zn by 153 and 49% compared to the uninoculated control. Pb accumulation however, was too low (<1 mg kg−1) to be determined. The results illustrated that special microbes and macrofungi can work together to remedy polluted soil as plant and plant growth promoting microbes do, probably because of excellent metal-accumulating abilities of macrofungi and IAA-siderophore production, phosphate solubilization abilities of the assisted-microbes. This kind of macrofungi-microbe interaction can be developed into a novel bioremediation strategy.  相似文献   

18.
3 次连续重复提取DNA 能较好反映土壤微生物丰度   总被引:6,自引:1,他引:6  
【目的】研究同一个土壤需要反复提取几次才能在最大程度上反映土壤微生物的丰度,探讨风干土壤代替新鲜土壤用于微生物丰度研究的可行性。【方法】针对两种理化性质具有较大差异的旱地和稻田新鲜土壤及其风干土壤,分别对土壤微生物进行5次连续裂解提取DNA。通过实时荧光定量PCR技术分析连续反复提取对土壤古菌和细菌16S rRNA gene数量、氨氧化古菌和细菌功能基因amoA数量的影响。【结果】3次连续提取DNA占5次提取DNA总量的76%以上,氨氧化古菌、氨氧化细菌、古菌和细菌4类微生物的3次连续提取最低回收率为77.5%;与新鲜土壤相比,风干处理导致氨氧化古菌、氨氧化细菌、古菌、细菌的数量分别降低84.3%、81.2%、12.5%和90.3%,然而,2种土壤风干过程中主要微生物类群的数量变化规律基本一致,表明土壤微生物对风干处理的响应可能受土壤类型的影响较小。【结论】土壤微生物连续3次裂解能较好反映微生物丰度。与新鲜土壤相比,风干过程显著降低了土壤微生物丰度,然而,通过风干土壤中微生物丰度的变化趋势反映新鲜土壤中微生物数量变化规律具有一定的可行性。  相似文献   

19.
DNA指纹技术在污染土壤生态毒理诊断中的应用   总被引:4,自引:0,他引:4  
生物标记物能在细咆或分子水平上指示暴露.效应关系,是进行污染土壤生态毒理诊断的主要技术手段之一。随着分子生物学技术的飞速发展,出现了一系列以聚合酶链式反应为基础的、在分子水平上检测污染物质导致的生物体DNA损伤的DNA指纹技术。DNA指纹技术的主要类型有:随机扩增多态性DNA(RAPD)、聚合酶链式反应.单链构象多态性(PCR-SSCP)、扩增片段长度多态性(AFLP)、任意引物聚合酶链式反应(AP—PCR)、差异显示反转录聚合酶链式反应(DDRT)、短DNA重复序列(SSR)及限制片段长度多态性(RFLP)等。这些技术与检测基因突变、染色体畸变和损伤为主的一系列经典研究方法如彗星分析、微核实验等相比具有简便、快速、灵敏等优点。本文着重介绍了随机扩增多态性DNA、聚合酶链式反应.单链构象多态性、扩增片段长度多态性3种重要的DNA指纹技术在污染土壤诊断中的应用。  相似文献   

20.
High diversity in DNA of soil bacteria.   总被引:23,自引:7,他引:16       下载免费PDF全文
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号