首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
《Autophagy》2013,9(6):938-953
Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.  相似文献   

2.
Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.  相似文献   

3.
Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host.  相似文献   

4.
Coxsackievirus B3 (CVB3), a common human pathogen for viral myocarditis, induces a direct cytopathic effect (CPE) and apoptosis on infected cells. To elucidate the mechanisms that contribute to these processes, we studied the role of glycogen synthase kinase 3beta (GSK3beta). GSK3beta activity was significantly increased after CVB3 infection and addition of tyrosine kinase inhibitors blocked CVB3-triggered GSK3beta activation. Inhibition of caspase activity had no inhibitory effect on CVB3-induced CPE; however, blockage of GSK3beta activation attenuated both CVB3-induced CPE and apoptosis. We further showed that CVB3 infection resulted in reduced beta-catenin protein expression, and GSK3beta inhibition led to the accumulation and nuclear translocation of beta-catenin. Finally, we found that CVB3-induced CPE and apoptosis were significantly reduced in cells stably overexpressing beta-catenin. Taken together, our results demonstrate that CVB3 infection stimulates GSK3beta activity via a tyrosine kinase-dependent mechanism, which contributes to CVB3-induced CPE and apoptosis through dysregulation of beta-catenin.  相似文献   

5.
In mammalian cells, 8-oxoguanine DNA glycosylase-1 (OGG1) is the main DNA glycosylase for the removal of 8-oxoguanine (8-oxoG). 8-oxoG, one of the most common products of the oxidative attack of DNA, is a premutagenic lesion that accumulates spontaneously at high frequencies in the genome. In this study, Ogg1 mRNA expression was detected throughout embryonic development in mice. In situ hybridization showed that in the neonatal brain, Ogg1 expression was detected in a distinct layer of cells in the medial wall of the lateral ventricle, which may correspond to ependymal cells, and in some scattered cells in the subventricular zone (SVZ), a brain region rich in neural stem/progenitor cells. Using neurospheres as a model for the study of neural stem/progenitor cells, we found that both the expression and activity of Ogg1 were high in neurospheres derived from newborn mice and decreased in adults and upon induction of cell differentiation. Furthermore, Ogg1 was shown to be the major DNA glycosylase initiating 8-oxoG repair in neurospheres. Our results strongly indicate that enhanced DNA repair capacity is an important mechanism by which neural stem/progenitor cells maintain their genome.  相似文献   

6.
7.
To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications, this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants. Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision. Under the influence of neurotrophic factors, bFGF and NGF, the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways. This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia, which could directly induce the differentiation toward neurons, or SCs.  相似文献   

8.
为了研究慢病毒介导的shRNA(Short hairpin RNA,shRNA)在柯萨奇B组3型病毒(Coxsackievirus B3,CVB3)导致的心肌炎小鼠模型中的抗病毒作用,合成针对CVB3基因组3753~3771区域的慢病毒Lenti-sh3753,感染HeLa细胞后感染CVB3病毒,通过荧光显微镜观测shRNA的表达和病毒致细胞病变效应,并测定培养上清中的病毒滴度,将慢病毒Lenti-sh3753感染BALB/c小鼠后感染CVB3病毒,观察小鼠的存活率,心脏组织中的病毒滴度和病理变化。结果发现Lenti-sh3753能在HeLa细胞中表达shRNA,并能有效抑制细胞中病毒RNA的复制。在小鼠模型上,Lenti-sh3753能提高小鼠的存活率,降低心脏中的病毒含量,从而减轻病理反应。这些结果提示,Lenti-sh3753在细胞和动物模型中能针对性地降解CVB3病毒RNA,明显降低病毒滴度,有效控制病毒感染。  相似文献   

9.
Enteroviral persistence has been implicated in the pathogenesis of several chronic human diseases, including dilated cardiomyopathy, insulin-dependent diabetes mellitus, and chronic inflammatory myopathy. However, these viruses are considered highly cytolytic, and it is unclear what mechanisms might permit their long-term survival. Here, we describe the generation of a recombinant coxsackievirus B3 (CVB3) expressing the enhanced green fluorescent protein (eGFP), which we used to mark and track infected cells in vitro. Following exposure of quiescent tissue culture cells to either wild-type CVB3 or eGFP-CVB3, virus production was very limited but increased dramatically after cells were permitted to divide. Studies with cell cycle inhibitors revealed that cells arrested at the G(1) or G(1)/S phase could express high levels of viral polyprotein and produced abundant infectious virus. In contrast, both protein expression and virus yield were markedly reduced in quiescent cells (i.e., cells in G(0)) and in cells blocked at the G(2)/M phase. Following infection with eGFP-CVB3, quiescent cells retained viral RNA for several days in the absence of infectious virus production. Furthermore, RNA extracted from nonproductive quiescent cells was infectious when transfected into dividing cells, indicating that CVB3 appears to be capable of establishing a latent infection in G(0) cells, at least in tissue culture. Finally, wounding of infected quiescent cells resulted in viral protein expression limited to cells in and adjacent to the lesion. We suggest that (i) cell cycle status determines the distribution of CVB3 during acute infection and (ii) the persistence of CVB3 in vivo may rely on infection of quiescent (G(0)) cells incapable of supporting viral replication; a subsequent change in the cell cycle status may lead to virus reactivation, triggering chronic viral and/or immune-mediated pathology in the host.  相似文献   

10.
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.  相似文献   

11.
Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.  相似文献   

12.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。  相似文献   

13.
Degeneration of neural retina causes vision impairment and can lead to blindness. Neural stem and progenitor cells might be used as a tool directed to regenerative medicine of the retina. Here, we describe a novel platform for cell phenotype-specific drug discovery and screening of proneurogenic factors, able to boost differentiation of neural retinal progenitor cells. By using single cell calcium imaging (SCCI) and a rational-based stimulation protocol, a diversity of cells emerging from differentiated retinal neurosphere cultures were identified. Exposure of retinal progenitor cultures to KCl or to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) stimulated Ca2+ transients in microtubule-associated protein 2 (MAP-2) positive neurons. Doublecortin (DCX) and polysialated neural cell adhesion molecule (PSA-NCAM) positive neuroblasts were distinguished from differentiated neurons on the basis of their response to muscimol. Ca2+ fluxes in glial fibrillary acidic protein (GFAP) or glutamine synthetase (GS) positive cells were induced by ATP. To validate the platform, neurospheres were treated with brain-derived neurotrophic factor (BDNF) (proneurogenic) or ciliary neurotrophic factor (CNTF) (gliogenic factor). BDNF increased the percentage of differentiated cells expressing Tuj-1 sensitive to KCl or AMPA and reduced the population of cells responding to muscimol. CNTF exposure resulted in a higher number of cells expressing GFAP responding to ATP. All together, our data may open new perspectives for cell type-specific discovery of drug targets and screening of novel proneurogenic factors to boost differentiation of neural retina cells to treat degenerative retinal diseases.  相似文献   

14.
Cellular FLIP (c-FLIP) is an enzymatically inactive paralogue of caspase-8 and as such can block death receptor-induced apoptosis. However, independent of death receptors, c-FLIP-Long (c-FLIPL) can heterodimerize with and activate caspase-8. This is critical for promoting the growth and survival of T lymphocytes as well as the regulation of the RIG-I helicase pathway for type I interferon production in response to viral infections. Truncated forms of FLIP also exist in mammalian cells (c-FLIPS) and certain viruses (v-FLIP), which lack the C-terminal domain that activates caspase-8. Thus, the ratio of c-FLIPL to these short forms of FLIP may greatly influence the outcome of an immune response. We examined this model in mice transgenically expressing c-FLIPS in T cells during infection with Coxsackievirus B3 (CVB3). In contrast to our earlier findings of reduced myocarditis and mortality with CVB3 infection of c-FLIPL-transgenic mice, c-FLIPS-transgenic mice were highly sensitive to CVB3 infection as manifested by increased cardiac virus titers, myocarditis score, and mortality compared to wild-type C57BL/6 mice. This observation was paralleled by a reduction in serum levels of IL-10 and IFN-α in CVB3-infected c-FLIPS mice. In vitro infection of c-FLIPS T cells with CVB3 confirmed these results. Furthermore, molecular studies revealed that following infection of cells with CVB3, c-FLIPL associates with mitochondrial antiviral signaling protein (MAVS), increases caspase-8 activity and type I IFN production, and reduces viral replication, whereas c-FLIPS promotes the opposite phenotype.  相似文献   

15.
为了研究短双链RNA(Small interfering RNA,siRNA)对柯萨奇B组3型病毒(CVB3)复制的影响及其作用特性,合成针对CVB3基因组2B区的siRNA-2B,脂质体法转染HeLa细胞后感染CVB3病毒,观测转染效率及存留时间、毒性作用、病毒致细胞病变效应、病毒滴度、病毒RNA含量、siRNA-2B对重组基因的特异性降解及培养上清有限稀释后再感染情况.结果发现siRNA-2B能高效转染入HeLa细胞并存留长达48h,高剂量的siRNA-2B对培养细胞无明显毒性,siRNA-2B能特异性针对2B区有效地降解病毒RNA,能明显抑制病毒RNA的复制.随着转染浓度的增加,siRNA-2B的抗病毒作用逐渐增强.siRNA-2B还能明显降低CVB3的再感染能力.这些结果提示,针对基因组2B区的siRNA-2B可以明显抑制CVB3基因复制,有效控制病毒再感染,并具有高效性、特异性和量效关系等特点.为siRNA可能成为预防和治疗CVB3感染的新途径奠定基础.  相似文献   

16.
17.
Neural stem cells (NSCs) can be isolated from nervous tissues or derived from embryonic stem cells. However, their procurement for clinical applications is limited, and there is a need for alternative types of cell that have NSCs properties. In the present study, the differentiation potential of rat adipose-derived stem cells (ADSCs) was evaluated by infecting these cells with a lentiviral vector-encoding green fluorescent protein (GFP). ADSCs transduced with lentivirus were able to generate NSC-like cells, without any effects on their growth, phenotype, and normal differentiation potential. NSC-like cells derived from ADSCs formed neurospheres and expressed high levels of the neural progenitor marker nestin. In the absence of selected growth factors, these neurospheres differentiated into neurons expressing NeuN and MAP2 and GFAP-expressing glia, as determined by immunocytochemistry, Western blotting, and quantitative real-time polymerase chain reaction. These results demonstrate that ADSCs can be induced to generate neurospheres that have NSC-like properties and may thus constitute a potential source of cells in stem cell therapy for neurological disorders.  相似文献   

18.
Wnt proteins promote neuronal differentiation in neural stem cell culture   总被引:36,自引:0,他引:36  
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.  相似文献   

19.
Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of therapeutic potential within human neural cell populations, thus enabling the introduction of specific therapeutic genes for treatment of CNS pathologies; to study the fate and effect of delivered therapeutic genes; to study toxicological effects. Furthermore these methodologies may be extended to other sources of human neural stem cells, such as human pluripotent stem cells, including patient-derived induced pluripotent stem cells.  相似文献   

20.
Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号