首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene silencing by epigenetic mechanisms is frequent in prostate cancer (PCA). The link between DNA hypermethylation and histone modifications is not completely understood. We chose the GSTP1 gene which is silenced by hypermethylation to analyze the effect of the histone deacetylase inhibitor depsipeptide on DNA methylation and histone modifications at the GSTP1 promoter site. Prostate cell lines (PC-3, LNCaP, and BPH-1) were treated with depsipeptide; apoptosis (FACS analysis), GSTP1 mRNA levels (quantitative real-time PCR), DNA hypermethylation (methylation-specific PCR), and histone modifications (chromatin immunoprecipitation) were studied. Depsipeptide induced apoptosis in PCA cells, but not a cell cycle arrest. Depispeptide reversed DNA hypermethylation and repressive histone modifications (reduction of H3K9me2/3 and H3K27me2/3; increase of H3K18Ac), thereby inducing GSTP1 mRNA re-expression. Successful therapy requires both, DNA demethylation and activating histone modifications, to induce complete gene expression of epigenetically silenced genes and depsipeptide fulfils both criteria.  相似文献   

2.
3.
4.
5.
6.
7.
Silencing of the O (6)-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, is involved in carcinogenesis. Recent studies have focused on DNA hypermethylation of the promoter CpG island. However, cases showing silencing with DNA hypomethylation certainly exist, and the mechanism involved is not elucidated. To clarify this mechanism, we examined the dynamics of DNA methylation, histone acetylation, histone methylation, and binding of methyl-CpG binding proteins at the MGMT promoter region using four MGMT negative cell lines with various extents of DNA methylation. Histone H3K9 di-methylation (H3me2K9), not tri-methylation, and MeCP2 binding were commonly seen in all MGMT negative cell lines regardless of DNA methylation status. 5Aza-dC, but not TSA, restored gene expression, accompanied by a decrease in H3me2K9 and MeCP2 binding. In SaOS2 cells with the most hypomethylated CpG island, 5Aza-dC decreased H3me2K9 and MeCP2 binding with no effect on DNA methylation or histone acetylation. H3me2K9 and DNA methylation were restricted to in and around the island, indicating that epigenetic modification at the promoter CpG island is critical. We conclude that H3me2K9 and MeCP2 binding are common and more essential for MGMT silencing than DNA hypermethylation or histone deacetylation. The epigenetic mechanism leading to silent heterochromatin at the promoter CpG island may be the same in different types of cancer irrespective of the extent of DNA methylation.  相似文献   

8.
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.  相似文献   

9.
10.
11.
12.
We have previously reported that carcinogenic nickel compounds decreased global histone H4 acetylation and silenced the gpt transgene in G12 Chinese hamster cells. However, the nature of this silencing is still not clear. Here, we report that nickel ion exposure increases global H3K9 mono- and dimethylation, both of which are critical marks for DNA methylation and long-term gene silencing. In contrast to the up-regulation of global H3K9 dimethylation, nickel ions decreased the expression and activity of histone H3K9 specific methyltransferase G9a. Further investigation demonstrated that nickel ions interfered with the removal of histone methylation in vivo and directly decreased the activity of a Fe(II)-2-oxoglutarate-dependent histone H3K9 demethylase in nuclear extract in vitro. These results are the first to show a histone H3K9 demethylase activity dependent on both iron and 2-oxoglutarate. Exposure to nickel ions also increased H3K9 dimethylation at the gpt locus in G12 cells and repressed the expression of the gpt transgene. An extended nickel ion exposure led to increased frequency of the gpt transgene silencing, which was readily reversed by treatment with DNA-demethylating agent 5-aza-2'-deoxycytidine. Collectively, our data strongly indicate that nickel ions induce transgene silencing by increasing histone H3K9 dimethylation, and this effect is mediated by the inhibition of H3K9 demethylation.  相似文献   

13.
14.
15.
DNA methylation,a conserved epigenetic mark,is critical for tuning temporal and spatial gene expression.The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci.However,how ROS1 is recruited to specific loci is not well understood.Here,we report the discovery of Arabidopsis AGENET Domain Containing Protein 3(AGDP3) as a cellular factor that is required to prevent g...  相似文献   

16.
17.
18.
19.
20.
The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de‐ubiquitination and histone acetylation/deacetylation, the repressive histone methyl transferases CURLY LEAF (CLF) and SWINGER (SWN), and the gene silencing repressor ROS1 (REPRESSOR OF SILENCING1) and promoter of silencing KYP/SUVH4 (KRYPTONITE), during dormancy cycling in the SSB. ROS1 expression was positively correlated with dormancy while the reverse was observed for CLF and KYP/SUVH4. We propose ROS1 dependent repression of silencing and a sequential requirement of CLF and KYP/SUVH4 dependent gene repression and silencing for the maintenance and suppression of dormancy during dormancy cycling. Seasonal expression of H2B modifying genes was correlated negatively with temperature and positively with DOG1 expression, as were histone acetyltransferase genes, with histone deacetylases positively correlated with temperature. Changes in the histone marks H3K4me3 and H3K27me3 were seen on DOG1 (DELAY OF GERMINATION1) in Cvi during dormancy cycling. H3K4me3 activating marks remained stable along DOG1. During relief of dormancy, H3K27me3 repressive marks slowly accumulated and accelerated on exposure to light completing dormancy loss. We propose that these marks on DOG1 serve as a thermal sensing mechanism during dormancy cycling in preparation for light repression of dormancy. Overall, chromatin remodelling plays a vital role in temporal sensing through regulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号