首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In eukaryotic cells, polypeptides are N glycosylated after passing through the membrane of the ER into the ER lumen. This modification is effected cotranslationally by the multimeric oligosaccharyltransferase (OST) enzyme. Here, we report the first cross-linking of an OST subunit to a nascent chain that is undergoing translocation through, or integration into, the ER membrane. A photoreactive probe was incorporated into a nascent chain using a modified Lys-tRNA and was positioned in a cryptic glycosylation site (-Q-K-T- instead of -N-K-T-) in the nascent chain. When translocation intermediates with nascent chains of increasing length were irradiated, nascent chain photocross-linking to translocon components, Sec61alpha and TRAM, was replaced by efficient photocross-linking solely to a protein identified by immunoprecipitation as the STT3 subunit of the OST. No cross-linking was observed in the absence of a cryptic sequence or in the presence of a competitive peptide substrate of the OST. As no significant nascent chain photocross-linking to other OST subunits was detected in these fully assembled translocation and integration intermediates, our results strongly indicate that the nascent chain portion of the OST active site is located in STT3.  相似文献   

2.
Schwarz M  Knauer R  Lehle L 《FEBS letters》2005,579(29):6564-6568
The key step of N-glycosylation of proteins in the endoplasmic reticulum is catalyzed by the hetero-oligomeric protein complex oligosaccharyltransferase (OST). It transfers the lipid-linked core-oligosaccharide to selected Asn-X-Ser/Thr-sequences of nascent polypeptide chains. Biochemical and genetic approaches have revealed that OST from Saccharomyces cerevisiae consists of nine subunits: Wbp1p, Swp1p, Stt3p, Ost1p, Ost2p, Ost4p, Ost5p, Ostp3 and Ost6p. By blue native polyacrylamide electrophoresis we show that yeast OST consists of two isoforms with distinct functions differing only in the presence of the two related Ost3 and Ost6p proteins. The OST6-complex was found to be important for cell wall integrity and temperature stress. Ost3p and Ost6p are not essential for OST activity, and can in part displace each other in the complex when overexpressed, suggesting a dynamic regulation of the complex formation.  相似文献   

3.
Within the lumen of the rough endoplasmic reticulum, oligosaccharyltransferase catalyzes the en bloc transfer of a high mannose oligosaccharide moiety from the lipid-linked oligosaccharide donor to asparagine acceptor sites in nascent polypeptides. The Saccharomyces cerevisiae oligosaccharyltransferase was purified as a heteroligomeric complex consisting of six subunits (alpha-zeta) having apparent molecular masses of 64 kD (Ost1p), 45 kD (Wbp1p), 34 kD, 30 kD (Swp1p), 16 kD, and 9 kD. Here we report a structural and functional characterization of Ost3p which corresponds to the 34-kD gamma-subunit of the oligosaccharyltransferase. Unlike Ost1p, Wbp1p, and Swp1p, expression of Ost3p is not essential for viability of yeast. Instead, ost3 null mutant yeast grow at wild-type rates on solid or in liquid media irrespective of culture temperature. Nonetheless, detergent extracts prepared from ost3 null mutant membranes are twofold less active than extracts prepared from wild-type membranes in an in vitro oligosaccharyltransferase assay. Furthermore, loss of Ost3p is accompanied by significant underglycosylation of soluble and membrane- bound glycoproteins in vivo. Compared to the previously characterized ost1-1 mutant in the oligosaccharyltransferase, and the alg5 mutant in the oligosaccharide assembly pathway, ost3 null mutant yeast appear to be selectively impaired in the glycosylation of several membrane glycoproteins. The latter observation suggests that Ost3p may enhance oligosaccharide transfer in vivo to a subset of acceptor substrates.  相似文献   

4.
The role of glycosylation in the function of the T2 family of RNases is not well understood. In this work, we examined how glycosylation affects the progression of the T2 RNase Rny1p through the secretory pathway in Saccharomyces cerevisiae. We found that Rny1p requires entering into the ER first to become active and uses the adaptor protein Erv29p for packaging into COPII vesicles and transport to the Golgi apparatus. While inside the ER, Rny1p undergoes initial N‐linked core glycosylation at four sites, N37, N70, N103 and N123. Rny1p transport to the Golgi results in the further attachment of high‐glycans. Whereas modifications with glycans are dispensable for the nucleolytic activity of Rny1p, Golgi‐mediated modifications are critical for its extracellular secretion. Failure of Golgi‐specific glycosylation appears to direct Rny1p to the vacuole as an alternative destination and/or site of terminal degradation. These data reveal a previously unknown function of Golgi glycosylation in a T2 RNase as a sorting and secretion signal .   相似文献   

5.
6.
Enteropathogenic Escherichia coli (EPEC) is an enteric human pathogen responsible for much worldwide morbidity and mortality. EPEC uses a type III secretion system to inject bacterial proteins into the cytosol of intestinal epithelial cells to cause diarrheal disease. We are interested in determining the host proteins to which EPEC translocator and effector proteins bind during infection. To facilitate protein enrichment, we created fusions between GST and EPEC virulence proteins, and expressed these fusions individually in Saccharomyces cerevisiae. The biology of S. cerevisiae is well understood and often employed as a model eukaryote to study the function of bacterial virulence factors. We isolated the yeast proteins that interact with individual EPEC proteins by affinity purifying against the GST tag. These complexes were subjected to ICAT combined with ESI-MS/MS. Database searching of sequenced peptides provided a list of proteins that bound specifically to each EPEC virulence protein. The dataset suggests several potential mammalian targets of these proteins that may guide future experimentation.  相似文献   

7.
Neutral endopeptidase (NEP) is a 90‐ to 110‐kDa cell‐surface peptidase that is normally expressed by numerous tissues but whose expression is lost or reduced in a variety of malignancies. The anti‐tumorigenic function of NEP is mediated not only by its catalytic activity but also through direct protein–protein interactions of its cytosolic region with several binding partners, including Lyn kinase, PTEN, and ezrin/radixin/moesin (ERM) proteins. We have previously shown that mutation of the K19K20K21 basic cluster in NEPs' cytosolic region to residues QNI disrupts binding to the ERM proteins. Here we show that the ERM‐related protein merlin (NF2) does not bind NEP or its cytosolic region. Using experimental data, threading, and sequence analysis, we predicted the involvement of moesin residues E159Q160 in binding to the NEP cytosolic domain. Mutation of these residues to NL (to mimic the corresponding N159L160 residues in the nonbinder merlin) disrupted moesin binding to NEP. Mutation of residues N159L160Y161K162M163 in merlin to the corresponding moesin residues resulted in NEP binding to merlin. This engineered NEP peptide–merlin interaction was diminished by the QNI mutation in NEP, supporting the role of the NEP basic cluster in binding. We thus identified the region of interaction between NEP and moesin, and engineered merlin into a NEP‐binding protein. These data form the basis for further exploration of the details of NEP‐ERM binding and function.  相似文献   

8.
《MABS-AUSTIN》2013,5(6):1474-1485
CTLA4-Ig is a highly glycosylated therapeutic fusion protein that contains multiple N- and O-glycosylation sites. Glycosylation plays a vital role in protein solubility, stability, serum half-life, activity, and immunogenicity. For a CTLA4-Ig biosimilar development program, comparative analytical data, especially the glycosylation data, can influence decisions about the type and amount of animal and clinical data needed to establish biosimilarity. Because of the limited clinical experience with biosimilars before approval, a comprehensive level of knowledge about the biosimilar candidates is needed to achieve subsequent development. Liquid chromatography-mass spectrometry (LC–MS) is a versatile technique for characterizing N- and O-glycosylation modification of recombinant therapeutic proteins, including 3 levels: intact protein analysis, peptide mapping analysis, and released glycans analysis. In this report, an in-depth characterization of glycosylation of a candidate biosimilar was carried out using a systematic approach: N- and O-linked glycans were identified and electron-transfer dissociation was then used to pinpoint the 4 occupied O-glycosylation sites for the first time. As the results show, the approach provides a set of routine tools that combine accurate intact mass measurement, peptide mapping, and released glycan profiling. This approach can be used to comprehensively research a candidate biosimilar Fc-fusion protein and provides a basis for future studies addressing the similarity of CTLA4-Ig biosimilars.  相似文献   

9.
CTLA4-Ig is a highly glycosylated therapeutic fusion protein that contains multiple N- and O-glycosylation sites. Glycosylation plays a vital role in protein solubility, stability, serum half-life, activity, and immunogenicity. For a CTLA4-Ig biosimilar development program, comparative analytical data, especially the glycosylation data, can influence decisions about the type and amount of animal and clinical data needed to establish biosimilarity. Because of the limited clinical experience with biosimilars before approval, a comprehensive level of knowledge about the biosimilar candidates is needed to achieve subsequent development. Liquid chromatography-mass spectrometry (LC–MS) is a versatile technique for characterizing N- and O-glycosylation modification of recombinant therapeutic proteins, including 3 levels: intact protein analysis, peptide mapping analysis, and released glycans analysis. In this report, an in-depth characterization of glycosylation of a candidate biosimilar was carried out using a systematic approach: N- and O-linked glycans were identified and electron-transfer dissociation was then used to pinpoint the 4 occupied O-glycosylation sites for the first time. As the results show, the approach provides a set of routine tools that combine accurate intact mass measurement, peptide mapping, and released glycan profiling. This approach can be used to comprehensively research a candidate biosimilar Fc-fusion protein and provides a basis for future studies addressing the similarity of CTLA4-Ig biosimilars.  相似文献   

10.
11.
  1. Download : Download high-res image (101KB)
  2. Download : Download full-size image
Highlights
  • •Guidelines for studying protein complexes via co-fractionation mass spectrometry.
  • •A novel procedure for profiling gold standard protein complexes in CF-MS data.
  • •Recommendations for efficient CF-MS fractionation collection.
  • •Scoring metric recommendations for precise and sensitive CF-MS data analysis.
  相似文献   

12.
In this study, secretory processing of cell-surface displayed Aga2p fusions to bovine pancreatic trypsin inhibitor (BPTI) and the single chain Fv (scFv) antibody fragment D1.3 are examined. BPTI is more efficiently processed than D1.3 both when secreted and surface-displayed, and D1.3 expression imparts a greater amount of secretory stress on the cell as assayed by a reporter of the unfolded protein response (UPR). Surprisingly, simultaneous expression of the two proteins in the same cell somewhat improves BPTI surface display while decreasing D1.3 surface display with minimal effect on UPR activation. Furthermore, co-expression leads to the accumulation of punctate vacuolar aggregates of D1.3 and increased secretion of the D1.3-Aga2p fusion into the supernatant. Overexpression of the folding chaperones protein disulfide isomerase (PDI) and BiP largely mitigates the D1.3 surface expression decrease, suggesting that changes in vacuolar and cell surface targeting may be due, in part, to folding inefficiency. Titration of constitutive UPR expression across a broad range progressively decreases surface display of both proteins as UPR increases. D1.3-Aga2p traffic through the late secretory pathway appears to be strongly affected by overall secretory load as well as folding conditions in the ER.  相似文献   

13.
Exposure of glioblastoma U87MG cells to a cAMP analog leads to a decrease in proliferation, invasion, and angiogenic potential. Here, we apply a label‐free MS‐based approach to identify formerly N‐linked glycopeptides that change in abundance upon cAMP treatment. Over 150 unique glycopeptides in three biological repetitions were quantified, leading to the identification of 14 upregulated proteins and 21 downregulated proteins due to cAMP treatment. Of these, eight have been validated, either through comparison with microarray data or by Western blot. We estimate our ability to identify differentially expressed peptides at greater than 85% in a single biological repetition, while the analysis of multiple biological repetitions lowers the false positive rate to ~2%. Many of the proteins identified in this study are involved in cell signaling and some, such as Tenascin C, Cathepsin L, Neuroblastoma suppressor of tumorigenicity, and AXL/UFO tyrosine–protein kinase receptor, have been previously shown to be involved in glioblastoma progression. We also identify several semitryptic peptides that increase in abundance upon cAMP treatment, suggesting that cAMP regulates protease activity in these cells. Overall, these results demonstrate the benefits of using a highly specific enrichment method for quantitative proteomic experiments.  相似文献   

14.
The regulation of membrane traffic involves the Rab family of Ras-related GTPases, of which there are a total of 11 members in the yeast Saccharomyces cerevisiae. Previous work has identified PRA1 as a dual prenylated Rab GTPase and VAMP2 interacting protein [Martinic et al. (1999) J. Biol. Chem. 272, 26991-26998]. In this study we demonstrate that the yeast counterpart of PRA1 interacts with Rab proteins and with Yip1p, a membrane protein of unknown function that has been reported to interact specifically with the Rab proteins Ypt1p and Ypt31p. Yeast Pra1p/Yip3p is a factor capable of biochemical interaction with a panel of different Rab proteins and does not show in vitro specificity for any particular Rab. The interactions between Pra1p/Yip3p and Rab proteins are dependent on the presence of the Rab protein C-terminal cysteines and require C-terminal prenylation.  相似文献   

15.
Endogenous antimicrobial peptides and proteins are crucial components of the innate immune system and play an essential role in the defense against infection. Antimicrobial activity was detected in the acid extract of livers harvested from healthy adult White Leghorn hens, Gallus gallus. Two antimicrobial proteins and one antimicrobial polypeptide were isolated from the liver extract by cation-exchange and gel filtration chromatography, followed by two-step reverse-phase high-performance liquid chromatography (RP-HPLC). These antimicrobial components were identified as histones H2A and H2B.V, and histone H2B C-terminal fragment using peptide mass fingerprinting and partial sequencing by tandem nanoelectrospray mass spectrometry. The proteins and the peptide identified in the present study, which exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, were thermostable and showed salt-resistant activity. The antimicrobial properties of histones and histone fragment in chicken provide further evidence that histones, in addition to their role in nucleosome formation, may play an important role in innate host defense against intracellular or extracellular microbe invasion in a wide range of animal species.  相似文献   

16.
The exosome is a complex of eleven subunits in yeast, involved in RNA processing and degradation. Despite the extensive in vivo functional studies of the exosome, little information is yet available on the structure of the complex and on the RNase and RNA binding activities of the individual subunits. The current model for the exosome structure predicts the formation of a heterohexameric RNase PH ring, bound on one side by RNA binding subunits, and on the opposite side by hydrolytic RNase subunits. Here, we report protein-protein interactions within the exosome, confirming the predictions of constituents of the RNase PH ring, and show some possible interaction interfaces between the other subunits. We also show evidence that Rrp40p can bind RNA in vitro, as predicted by sequence analysis.  相似文献   

17.
Serine palmitoyltransferase (SPT) catalyzes the rate-limiting step of condensation of L-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (3KDS). Here, we report a HPLC-ESI-MS/MS method to directly quantify 3KDS generated by SPT. With this technique, we were able to detect 3KDS at a level comparable to that of dihydrosphingosine in yeast Saccharomyces cerevisiae. An in vitro SPT assay measuring the incorporation of deuterated serine into deuterated 3KDS was developed. The results show that SPT kinetics in response to palmitoyl-CoA fit into an allosteric sigmoidal model, suggesting the existence of more than one palmitoyl-CoA binding site on yeast SPT and positive cooperativity between them. Myriocin inhibition of yeast SPT activity was also investigated and we report here, for the first time, an estimated myriocin Ki for yeast SPT of approximately 10 nM. Lastly, we investigated the fate of serine α-proton during SPT reaction. We provide additional evidence to support the proposed mechanism of SPT catalytic activity in regard to proton exchange between the intermediate NH3+ base formed on the active Lys residue with surrounding water. These findings establish the current method as a powerful tool with significant resolution and quantitative power to study SPT activity.  相似文献   

18.
Protein–peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein–peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody–peptide interaction characteristics, by combining large‐scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide‐binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low‐affinity antibody–peptide interactions. The molecular mechanism for the degenerate peptide‐binding specificity appeared to be executed through the use of 2–3 semi‐conserved anchor residues in the C‐terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex–peptide complexes. In the long‐term, this knowledge will be instrumental for advancing our fundamental understanding of protein–peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide‐binding proteins in general, in various biotechnical and medical applications.  相似文献   

19.
Interleukin-13 is a Th2-associated cytokine responsible for many pathological responses in allergic asthma including mucus production, inflammation, and extracellular matrix remodeling. In addition, IL-13 is required for immunity to many helminth infections. IL-13 signals via the type-II IL-4 receptor, a heterodimeric receptor of IL-13Rα1 and IL-4Rα, which is also used by IL-4. IL-13 also binds to IL-13Rα2, but with much higher affinity than the type-II IL-4 receptor. Binding of IL-13 to IL-13Rα2 has been shown to attenuate IL-13 signaling through the type-II IL-4 receptor. However, molecular determinants that dictate the specificity and affinity of mouse IL-13 for the different receptors are largely unknown. Here, we used high-density overlapping peptide arrays, structural modeling, and molecular docking methods to map IL-13 binding sequences on its receptors. Predicted binding sequences on mouse IL-13Rα1 and IL-13Rα2 were in agreement with the reported human IL-13 receptor complex structures and site-directed mutational analysis. Novel structural differences were identified between IL-13 receptors, particularly at the IL-13 binding interface. Notably, additional binding sites were observed for IL-13 on IL-13Rα2. In addition, the identification of peptide sequences that are unique to IL-13Rα1 allowed us to generate a monoclonal antibody that selectively binds IL-13Rα1. Thus, high-density peptide arrays combined with molecular docking studies provide a novel, rapid, and reliable method to map cytokine-receptor interactions that may be used to generate signaling and decoy receptor-specific antagonists.  相似文献   

20.
Kumar A  Ward P  Katre UV  Mohanty S 《Biopolymers》2012,97(7):499-507
Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction. In eukaryotes, oligosaccharyl transferase (OT), a multi-subunit membrane-associated enzyme complex, catalyzes this reaction in newly synthesized proteins. In Saccharomyces cerevisiae, OT consists of nine nonidentical membrane proteins. Ost4p, the smallest subunit, bridges the catalytic subunit Stt3p with Ost3p. Mutation of transmembrane residues 18-24 in Ost4p has negative effect on OT activity, disrupts the Stt3p-Ost4p-Ost3p complex, results in temperature-sensitive phenotype, and hypoglycosylation. Heterologous expression and purification of integral membrane proteins are the bottleneck in membrane protein research. The authors report the cloning, successful overexpression and purification of recombinant Ost4p with a novel but simple method producing milligram quantities of pure protein. GB1 protein was found to be the most suitable tag for the large scale production of Ost4p. The cleavage of Ost4p conveniently leaves GB1 protein in solution eliminating further purification. The precipitated pure Ost4p is reconstituted in appropriate membrane mimetic. The recombinant protein is highly helical as indicated by the far-UV CD spectrum. The well-dispersed heteronuclear single quantum coherence spectrum indicates that this minimembrane protein is well-folded. The successful production of pure recombinant Ost4p with a novel yet simple method may have important ramification for the production of other membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号