首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease which is thought to result from a dysregulated immune response to infection with pathogenic hantaviruses, such as Sin Nombre virus or Andes virus (ANDV). Other New World hantaviruses, such as Prospect Hill virus (PHV), have not been associated with human disease. Activation of an antiviral state and cell signaling in response to hantavirus infection were examined using human primary lung endothelial cells, the main target cell infected in HPS patients. PHV, but not ANDV, was found to induce a robust beta interferon (IFN-beta) response early after infection of primary lung endothelial cells. The level of IFN induction correlated with IFN regulatory factor 3 (IRF-3) activation, in that IRF-3 dimerization and nuclear translocation were detected in PHV but not ANDV infection. In addition, phosphorylated Stat-1/2 levels were significantly lower in the ANDV-infected cells relative to PHV. Presumably, this reflects the lower level of IRF-3 activation and initial IFN induced by ANDV relative to PHV. To determine whether, in addition, ANDV interference with IFN signaling also contributed to the low Stat-1/2 activation seen in ANDV infection, the levels of exogenous IFN-beta-induced Stat-1/2 activation detectable in uninfected versus ANDV- or PHV-infected Vero-E6 cells were examined. Surprisingly, both viruses were found to downregulate IFN-induced Stat-1/2 activation. Analysis of cells transiently expressing only ANDV or PHV glycoproteins implicated these proteins in this downregulation. In conclusion, while both viruses can interfere with IFN signaling, there is a major difference in the initial interferon induction via IRF-3 activation between ANDV and PHV in infected primary endothelial cells, and this correlates with the reported differences in pathogenicity of these viruses.  相似文献   

4.
Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterized by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect, suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral responses triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVECs). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVECs upregulated HLA class I molecules more rapidly. Interestingly, HTNV clearly induced the production of beta interferon (IFN-beta), whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVECs. Nevertheless, the upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralizing anti-IFN-beta antibodies. Most strikingly, the antiviral MxA protein, which interferes with hantavirus replication, was already induced 16 h after infection with TULV. In contrast, HTNV-infected HUVECs showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression, TULV replicated only inefficiently in HUVECs, whereas HTNV-infected cells produced high titers of virus particles that decreased after 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells, which lack an IFN-induced MxA response. Thus, delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS.  相似文献   

5.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

6.
7.
8.
Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IkappaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.  相似文献   

9.
Schröder M  Baran M  Bowie AG 《The EMBO journal》2008,27(15):2147-2157
Viruses are detected by different classes of pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-like helicases. Engagement of PRRs leads to activation of interferon (IFN)-regulatory factor 3 (IRF3) and IRF7 through IKKepsilon and TBK1 and consequently IFN-beta induction. Vaccinia virus (VACV) encodes proteins that manipulate host signalling, sometimes by targeting uncharacterised proteins. Here, we describe a novel VACV protein, K7, which can inhibit PRR-induced IFN-beta induction by preventing TBK1/IKKepsilon-mediated IRF activation. We identified DEAD box protein 3 (DDX3) as a host target of K7. Expression of DDX3 enhanced Ifnb promoter induction by TBK1/IKKepsilon, whereas knockdown of DDX3 inhibited this, and virus- or dsRNA-induced IRF3 activation. Further, dominant-negative DDX3 inhibited virus-, dsRNA- and cytosolic DNA-stimulated Ccl5 promoter induction, which is also TBK1/IKKepsilon dependent. Both K7 binding and enhancement of Ifnb induction mapped to the N-terminus of DDX3. Furthermore, virus infection induced an association between DDX3 and IKKepsilon. Therefore, this study shows for the first time the involvement of a DEAD box helicase in TBK1/IKKepsilon-mediated IRF activation and Ifnb promoter induction.  相似文献   

10.
11.
Human cytomegalovirus (HCMV) microRNAs (miRNAs) significantly rewire host signaling pathways to support the viral lifecycle and regulate host cell responses. Here we show that SMAD3 expression is regulated by HCMV miR-UL22A and contributes to the IRF7-mediated induction of type I IFNs and IFN-stimulated genes (ISGs) in human fibroblasts. Addition of exogenous TGFβ interferes with the replication of a miR-UL22A mutant virus in a SMAD3-dependent manner in wild type fibroblasts, but not in cells lacking IRF7, indicating that downregulation of SMAD3 expression to limit IFN induction is important for efficient lytic replication. These findings uncover a novel interplay between SMAD3 and innate immunity during HCMV infection and highlight the role of viral miRNAs in modulating these responses.  相似文献   

12.
Deng W  Shi M  Han M  Zhong J  Li Z  Li W  Hu Y  Yan L  Wang J  He Y  Tang H  Deubel V  Luo X  Ning Q  Sun B 《The Journal of biological chemistry》2008,283(51):35590-35597
Induction of Type I IFNs is a central event in antiviral responses and must be tightly controlled. The protein kinase TBK1 is critically involved in virus-triggered type I IFN signaling. In this study, we identify an alternatively spliced isoform of TBK1, termed TBK1s, which lacks exons 3-6. Upon Sendai virus (SeV) infection, TBK1s is induced in both human and mouse cells and binds to RIG-1, disrupting the interaction between RIG-I and VISA. Consistent with that result, overexpression of TBK1s inhibits IRF3 nuclear translocation and leads to a shutdown of SeV-triggered IFN-beta production. Taken together, our data indicate that TBK1s plays an inhibitory role in virus-triggered IFN-beta signaling pathways.  相似文献   

13.
The unparalleled spread of highly pathogenic avian influenza A (HPAI) H5N1 viruses has resulted in devastating outbreaks in domestic poultry and sporadic human infections with a high fatality rate. To better understand the mechanism(s) of H5N1 virus pathogenesis and host responses in humans, we utilized a polarized human bronchial epithelial cell model that expresses both avian alpha-2,3- and human alpha-2,6-linked sialic acid receptors on the apical surface and supports productive replication of both H5N1 and H3N2 viruses. Using this model, we compared the abilities of selected 2004 HPAI H5N1 viruses isolated from humans and a recent human H3N2 virus to trigger the type I interferon (IFN) response. H5N1 viruses elicited significantly less IFN regulatory factor 3 (IRF3) nuclear translocation, as well as delayed and reduced production of IFN-beta compared with the H3N2 virus. Furthermore, phosphorylation of Stat2 and induction of IFN-stimulated genes (ISGs), such as MX1, ISG15, IRF7, and retinoic acid-inducible gene I, were substantially delayed and reduced in cells infected with H5N1 viruses. We also observed that the highly virulent H5N1 virus replicated more efficiently and induced a weaker IFN response than the H5N1 virus that exhibited low virulence in mammals in an earlier study. Our data suggest that the H5N1 viruses tested, especially the virus with the high-pathogenicity phenotype, possess greater capability to attenuate the type I IFN response than the human H3N2 virus. The attenuation of this critical host innate immune defense may contribute to the virulence of H5N1 viruses observed in humans.  相似文献   

14.
Hantaviruses replicate primarily in the vascular endothelium and cause two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). In this report, we demonstrate that the cellular entry of HFRS-associated hantaviruses is facilitated by specific integrins expressed on platelets, endothelial cells, and macrophages. Infection of human umbilical vein endothelial cells and Vero E6 cells by the HFRS-causing hantaviruses Hantaan (HTN), Seoul (SEO), and Puumala (PUU) is inhibited by antibodies to alphavbeta3 integrins and by the integrin ligand vitronectin. The cellular entry of HTN, SEO, and PUU viruses, but not the nonpathogenic Prospect Hill (PH) hantavirus (i.e., a virus with no associated human disease), was also mediated by introducting recombinant alphaIIbbeta3 or alphavbeta3 integrins into beta3-integrin-deficient CHO cells. In addition, PH infectivity was not inhibited by alphavbeta3-specific sera or vitronectin but was blocked by alpha5beta1-specific sera and the integrin ligand fibronectin. RGD tripeptides, which are required for many integrin-ligand interactions, are absent from all hantavirus G1 and G2 surface glycoproteins, and GRGDSP peptides did not inhibit hantavirus infectivity. Further, a mouse-human hybrid beta3 integrin-specific Fab fragment, c7E3 (ReoPro), also inhibited the infectivity of HTN, SEO, and PUU as well as HPS-associated hantaviruses, Sin Nombre (SN) and New York-1 (NY-1). These findings indicate that pathogenic HPS- and HFRS-causing hantaviruses enter cells via beta3 integrins, which are present on the surfaces of platelets, endothelial cells, and macrophages. Since beta3 integrins regulate vascular permeability and platelet function, these findings also correlate beta3 integrin usage with common elements of hantavirus pathogenesis.  相似文献   

15.
Herpes simplex virus (HSV) 1 stimulates type I IFN expression through the cGAS–STING–TBK1 signaling axis. Macrophages have recently been proposed to be an essential source of IFN during viral infection. However, it is not known how HSV‐1 inhibits IFN expression in this cell type. Here, we show that HSV‐1 inhibits type I IFN induction through the cGAS–STING–TBK1 pathway in human macrophages, in a manner dependent on the conserved herpesvirus protein ICP27. This viral protein was expressed de novo in macrophages with early nuclear localization followed by later translocation to the cytoplasm where ICP27 prevented activation of IRF3. ICP27 interacted with TBK1 and STING in a manner that was dependent on TBK1 activity and the RGG motif in ICP27. Thus, HSV‐1 inhibits expression of type I IFN in human macrophages through ICP27‐dependent targeting of the TBK1‐activated STING signalsome.  相似文献   

16.
17.
18.
19.
Sen N  Sen A  Mackow ER 《Journal of virology》2007,81(8):4323-4330
Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or "degron," within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号