首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used SEM to investigate the morphology of the cypris larvae from a range of species of the Cirripedia Acrothoracica, representing all three families and including the first detailed account of cyprids in the highly specialized Cryptophialidae. Special attention was given to the head shield (carapace), the lattice organs, the antennules, the thoracopods, the telson and the furcal rami. The cypris larvae of the Acrothoracica fall into two morphological groups; those of the Trypetesidae and Lithoglyptidae have a well-developed carapace (head shield) that can completely enclose the body and sports fronto-lateral pores, numerous short setae and lattice organs perforated by numerous small, rounded pores and a single, conspicuous terminal pore. The fourth antennular segment has the setae arranged in subterminal and terminal groups. There is a developed thorax with natatory thoracopods and a distinct abdomen and telson. In comparison, the cyprids of the Cryptophialidae exhibit apomorphies in the morphology of the carapace, the antennules and the thorax, mostly in the form of simplifications and reductions. They have a much smaller head shield, leaving parts of the body directly exposed. The shield is conspicuously ornamented by deep pits and hexagonally arranged ridges and bears a few, very long setae but lacks fronto-lateral pores. The lattice organs have numerous elongated pores, but no large, terminal pore. The fourth antennular segment has all the setae clustered in one terminal group. The thorax and thoracopods are rudimentary and not suitable for swimming. These reductions and simplifications in morphology correlate with cryptophialid cyprids being unable to swim. They can only disperse by antennular walking resulting in small, but highly gregarious populations of adults. The variations in antennular morphology and telson structure were traced for the genera of the families Lithoglyptidae and Trypetesidae. The traditional non-cladistic taxonomy in the suborders Pygophora (Cryptophialidae+Lithoglyptidae) and Apygophora (Trypetesidae) was based largely on symplesiomorphies in adult morphology and cannot be upheld. The Lithoglyptidae and Trypetesidae may form a monophylum, but evidence remains scarce. We expect that the use of larval (cyprid) characters will in the future play an important part in more detailed phylogenetic analyses of the Acrothoracica and also shed new light on their reproductive ecology.  相似文献   

2.
Kolbasov  Gregory A. 《Hydrobiologia》2000,438(1-3):185-191
A new species of the Lithoglyptes from the Seychelles is described. The external morphology of the mantle sac and the body were examined under SEM. The position of a new species within Lithoglyptes and the ultrastructural characters of different species of this genus are discussed.  相似文献   

3.
Rhizocephalan barnacles are parasites of Crustacea. They lack even the rudiments of an alimentary canal, but infiltrate their hosts with a nutrient-absorbing system of rootlets. We review the ultrastructure of the rootlets using light microscopy, SEM, and TEM in nine species from five families, representing both suborders of the Rhizocephala: from the Kentrogonida Peltogaster paguri, P. curvatus, Peltogasterella sulcata, Cyphosaccus norvegicus (Peltogastridae); Lernaeodiscus porcellanae (Lernaeodiscidae); and Sacculina carcini (Sacculinidae); and from the Akentrogonida Clistosaccus paguri (Clistosaccidae); Chthamalophilus delagei, and Boschmaella japonica (Chthamalophilidae). With the exception of Chthamalophilus delagei, the root system of the investigated species shares numerous apomorphies at the ultrastructural level and displays at all levels specializations that maximize the surface area. The rootlets consist of a cuticle, an epidermis and a subjacent layer of axial cells that often, but not always surround, a central lumen. The rootlets are at all times enclosed in a less than 0.5 microm thick cuticle, which is never molted. The cuticle consists of an inner homogeneous layer with a slightly fibrous structure and an outer, less than 15-nm thick electron-dense layer, from which numerous microcuticular projections extend into the hemolymphatic space of the host. The microcuticular projections consist of the outer electron-dense layer and sometimes a core of the more translucent homogeneous layer. They vary among the species from being simple in Sacculina carcini to exhibiting complex branching patterns in Peltogasterella sulcata and Cyphosaccus norvegicus. Beneath the cuticle the epidermal plasma membrane is thrown into irregularly shaped projections. The epidermal cells are joined by long septate junctions and exhibit the characteristics of a transporting epithelium. Experiments with acid phosphatase revealed activity both in the epidermis and among the microcuticular projections. The projections may therefore form a domain that is important in absorption and extracellular digestion of nutrients from the host. The axial cells contain abundant endoplasmic reticulum and seem to convert absorbed carbohydrates into lipid, which is stored in large droplets. Subepidermal muscle cells cause sinuous movements of the rootlets, but it remains unknown how nutrients are transported along the rootlets towards the external reproductive body. In C. delagei the single, bladder-shaped rootlet lacks both the apical projections in the epidermis, the electron-dense cuticle layer, and the microcuticular projections. We review previous studies on the rhizocephalan root system and discuss functional and phylogenetic aspects of the morphology.  相似文献   

4.
We used scanning electron microscopy (SEM) to describe cypris morphology in species of the barnacles Ibla and Paralepas, both of which are pivotal in understanding cirripede evolution. In Ibla, we also studied late naupliar stages with video and SEM. Special emphasis was put on the lattice organs, the antennules and the thorax and telson. In Paralepas we had settled specimens only and could therefore only investigate the carapace with the lattice organs. Cyprids of Ibla quadrivalvis and Paralepas dannevigi have five sets of lattice organs, grouped as two anterior and three posterior pairs. The organs are of the pore‐field type and the terminal pore is situated anteriorly in the first pair, just as in the Rhizocephala and the Thoracica. In Ibla the armament of antennular sensilla resembles that found in the Thoracica but differs from the Rhizocephala. The absence of setules on the A and B setae sited terminally on the fourth antennular segment is a similarity with the Acrothoracica. The attachment disc is angled rather than facing distally and is encircled by a low cuticular velum. The thoracopods have two‐segmented endopods and exopods as in the Thoracica, but the number, shape, and position of thoracopodal setae differ somewhat from other species of that superorder. Both Ibla and Paralepas cyprids have a deeply cleaved telson, but no independent abdominal part. In cypris morphology, Ibla and Paralepas show several synapomorphies with the clade comprising Rhizocephala and Thoracica and there are no specific apomorphies with either the Acrothoracica, the Rhizocephala or any particular subgroup within the Thoracica. This is in agreement with recent molecular evidence that Ibla (Ibliformes) is the sister taxon to all other Thoracica and the ibliforms therefore become the outgroup of choice for studying character evolution within the superorder. Paralepas, and other pedunculated barnacles without shell plates, are apparently not primitive but are secondarily evolved and nested within the Thoracica. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Marls with pillow lavas of Late Eocene age from Castelnuovo in the Euganean Hills (Padua, NE Italy) have yielded three new verrucid cirripede species, Verruca veneta nov. sp., Costatoverruca? seguenzai nov. sp., and Metaverruca euganea nov. sp. The stratigraphic distribution of these taxa is discussed in light of previous verrucid records and their geologic context is established. They represent the oldest known verrucids from Italy.  相似文献   

6.
How androdioecy (coexistence of hermaphrodites and males) is maintained is still poorly understood. Therefore, sex determination was studied in the androdioecious barnacle Scalpellum scalpellum L. First, 247 cypris larvae from seven broods were investigated for sexual dimorphism in larval morphology and found to be all identical. Second, experiments with cyprids showed that males and hermaphrodites differ distinctly in morphology as soon as 4–5 days after settlement. Third, 14 252 cyprids were allowed to settle on the bottom of their culture cages, and all surviving larvae developed into hermaphrodites and none into dwarf males. Fourth, larvae settled in hermaphrodite receptacles (i.e. future males) were removed at increasing intervals after settlement to study if the male and hermaphrodite sexual expressions are fixed or plastic. All larvae became dwarf males if allowed to stay there for more than 8 h after settlement. But if removed within 3 h after settlement, half of them developed into hermaphrodites. We conclude that an environmental sex determination mechanism operates in S. scalpellum. Together with a 1:1 hermaphrodite/male ratio observed in previously reported experiments offering a free choice of settlement, we suggest that all larvae are potential hermaphrodites, but only 50% can settle in hermaphrodite receptacles and yield males.  相似文献   

7.
Melone  Giulio 《Hydrobiologia》2001,(1):291-296
Females and males of Rhinoglena frontalis (Monogononta, Epiphanidae) are observed by SEM and their external morphologies are compared. The two sexes differ in size and shape of the body. The female body is fusiform with a short, conical foot, while the male body is more slender and has a rather long foot. The rotatory apparatus (or corona) of both sexes is similar with only minor differences and consists of rows and tufts of cilia arranged around the mouth opening. The corona is made of two paired lobes lateral to the mouth and of a third prominent dorsal lobe, usually called proboscis. The three lobes are lined externally by dense rows of cilia, which constitute the cingulum, used for swimming. The central surface of the proboscis is covered with numerous longitudinal rows of cilia bent towards the mouth. The lateral lobes show, on their central surfaces, two concentric arcs of cirri (made of tightly packed cilia) bent towards the mouth. The similar organization of the rotatory apparatus of both sexes is related to the fact that the male, in this species, is able to feed and has a developed mastax and digestive system. The trophi of both sexes are illustrated and compared.  相似文献   

8.
Walker  G. 《Cell and tissue research》1974,152(4):449-465
Cell and Tissue Research - The frontal filaments comprise two regions, the internal vesicles and the external filaments. Dendrites of extra-optic protocerebral origin pass ventrally from the brain,...  相似文献   

9.
The species-poor meiofaunal Cephalocarida have played an important role in discussions of the phylogeny and evolution of Crustacea since their discovery in 1955. One reason may be that the morphology of cephalocarids includes some aspects of putatively ancient appearance, such as the simple roof-shaped head shield, the anterior three head appendages resembling those of a nauplius larva, or the trunk-limb-like second maxilla. Cephalocarida have even been suggested to represent the sister taxon to all other Eucrustacea. Presence of possibly plesiomorphic characters, however, does not necessarily point to a basal position in the system. Growing evidence demonstrates that the modification of the fourth post-antennular cephalic appendage, the ‘maxilla’, into a “mouth part” may have occurred independently in the different eucrustacean lineages, so a trunk-limb-like maxilla is an ancient feature that does not hold only for cephalocarids. Retention of its plesiomorphic shape and function in the Cephalocarida remains, however, noteworthy. Cephalocarids are still little studied and incompletely known, especially their external morphology. By examining several adults and one young specimen of Lightiella monniotae Cals and Delamare Deboutteville, 1970 from New Caledonia, we aimed to a) document as many details as possible, and b) compare these data with other species of Cephalocarida. We also aimed to reconstruct aspects of the ground pattern of Cephalocarida, which is a pre-requisite for any comparisons in a broader perspective of crustacean phylogeny. Among the new findings or conclusions are: (1) Lightiella is in need of a revision since several assumed differences between the species are questionable or subject to intra-specific variability; (2) the cuticle of the trunk-limb basipod is sub-divided into a number of smaller sclerotized areas as in various exceptionally 3D preserved fossil crustaceans from Cambrian ‘Orsten’ faunal assemblages; (3) a small transitional portion on the post-maxillulary limbs in the area where the endopod and basipod connect is discussed as either a reduced, proximal endopod segment or as an evolutionary new joint of the basipod to enhance its flexibility; (4) the so-called pseud-epipod is interpreted as an outer branch of the exopod; (5) compared to ‘Orsten’ crustaceans many characters of the Cephalocarida are more modified than previously assumed, including the morphology of the trunk-limb basipod, and the unique, ring-shaped appearance of the abdominal segments. Also the development is not as plesiomorphic as sometimes assumed, at least not compared to that of the strictly anamorphic series of the ‘Orsten’ eucrustacean Rehbachiella kinnekullensis. The application of SEM techniques has again proved to be especially appropriate because of the small size of these animals, and because it permits direct comparisons with other similarly small crustaceans and the ‘Orsten’ crustaceans and their larvae.  相似文献   

10.
The barnacles (Crustacea, Cirripedia) consist of three well-defined orders: the conventional filter-feeding barnacles (Thoracica), the burrowing barnacles (Acrothoracica), and the parasitic barnacles (Rhizocephala). Thoracica and Acrothoracica feed by catching food particles from the surrounding seawater using their thoracic appendages while members of Rhizocephala are exclusively parasitic. The parasite consists of a sac-shaped, external reproductive organ situated on the abdomen of its crustacean host and a nutrient-absorbing root system embedded into the heamolymph of the host. In order to resolve the phylogenetic relationship of the order Rhizocephala and elucidate the evolution of the different life history strategies found within the Rhizocephala, we have performed the first comprehensive phylogenetic analysis of the group. Our results indicate that Rhizocephala is monophyletic with a filter-feeding barnacle-like ancestor. The host-infective stage, the kentrogon larva, inserted in the lifecycle of the rhizocephalan suborder, Kentrogonida, is shown to be ancestral and most likely a homologue of the juvenile stage of a conventional thoracican barnacle. The mode of host inoculation found in the suborder Akentrogonida, where the last pelagic larval stage directly injects the parasitic material into the heamolymph of the host is derived, and has evolved only once within the Rhizocephala. Lastly, our results show that the ancestral host for extant rhizocephalans appears to be the anomuran crustaceans (Anomura), which includes hermit crabs and squat lobsters.  相似文献   

11.
Polycomplexes are described for the first time in spermatocytes of a cirripede crustacean, Pollicipes polymerus Sowerby. Synaptonemal complexes of regular tripartite construction are seen from zygotene to mid-pachytene. Although some of the synaptonemal complexes are disrupted at late pachytene and may degenerate at this stage, some persist and by diplotene may form polycomplexes by the bending and self-fusion of their lateral elements. These polycomplexes are still encompassed by chromosomes and consist of four dense plates and intercalated central elements and transverse fibers. Other polycomplexes with five or six dense plates, all of which are considerably wider than lateral elements of mid-pachytene synaptonemal complexes, are also seen in diplotene nuclei. These may be attached to a chromosome at only one end or may be in the nucleoplasm, free of chromosomal involvement except for fine fibrous connectives. No polycomplexes are seen in meiotic cells after diplotene and their fate is unknown. It is suggested that poly-complexes serve as sequestra for synaptonemal material which could prevent normal chromosomal disjunction.  相似文献   

12.
A new genus and species of phosphatic‐shelled eolepadid barnacle from the Posidonia Shale (Toarcian, falciferum Zone) of Zell u. Aichelberg, southern Germany, is described as Toarcolepas mutans gen. et sp. nov. Numerous disarticulated individuals, associated with fossil wood, are present in a piece of concretionary limestone, and these are interpreted as having lived epiplanktonically attached to driftwood. The taxonomy of the Late Triassic – Early Cretaceous family Eolepadidae is reviewed, and two further species (T. gaveyi (Withers, 1920) and T. lotharingica (Méchin, 1901)) are referred to Toarcolepas. The chemistry of valve composition of the Carboniferous Praelepas and Triassic–Jurassic eolepadid cirripedes is investigated using X‐ray dispersive analysis, and the ubiquitous presence of abundant phosphorus is taken as evidence that these taxa had a primary phosphatic composition, now preserved as francolite. A significant change in shell chemistry from phosphate to calcium carbonate took place during the evolution of the Thoracica, during the Late Triassic or Early Jurassic. The driving force behind this change may have been related to the reduced predation pressure associated with acquisition of an epiplanktonic mode of life. Calcite is softer, but energetically cheaper to deposit than phosphate mineral phases.  相似文献   

13.
Abstract: Cirripede remains (Thoracica, Verrucomorpha), found associated with the mosasaur Prognathodon waiparaensis  Welles and Gregg, 1971 in glauconitic sands of the Late Cretaceous Conway Formation exposed along the Waipara River bank (mid‐Canterbury, New Zealand), are identified as a new species, Verruca sauria sp. nov. On the basis of taphonomy, it is deduced that these verrucids grew on a postmortem accumulation of mosasaur bones under very quiescent conditions. The current amphitropical distribution of the earliest known verrucids, i.e. V. sauria sp. nov., V. prisca  Bosquet, 1854 , V. pusilla  Bosquet, 1857 and V. tasmanica  Buckeridge, 1983 , is rationalized in the light of Tethyan palaeogeography.  相似文献   

14.
Freshwater oligochaetes have at least two kinds of external sense organs: multiciliate organs of short cilia (also present in earthworms) and sense organs with one to three long cilia (unknown in earthworms and possibly acting as rheoreceptors). Ciliate sense organs of freshwater oligochaetes are distributed over their entire body surface, including the clitellum. They are scattered on the prostomium and pigidium and are arranged into a transversal chaetal row and dispersed or forming a few other discrete transversal rows on chaetal segments. Three species display very prominent sense organs (sensory buds in Protuberodrilus tourenqui and papillae in Ophidonais serpentina and Spirosperma velutinus). The number of cilia per organ at the prostomium of freshwater families appears to be fewer than that of terrestrial ones. It is suggested that the total number of cilia at the prostomium of the freshwater species could be related to their habitat, evolving from an epibenthic to an endobenthic way of life.  相似文献   

15.
Cypris larvae of the pedunculate barnacles Octolasmis angulata (Poecilasmatidae), Lepas australis, L. pectinata, and Dosima fascicularis (Lepadidae) were studied with scanning electron microscopy, focusing on the sensory setae and the attachment disc on the antennules. The antennules of O. angulata did not exhibit any remarkable trait, but carry the same number of setae as seen in most other thoracicans. The third segment is bell-shaped and quite distinct from the second and its attachment disc is surrounded by a skirt. We found several potential synapomorphies in antennulary morphology between cyprids of the lepadid species but none of them were shared with the cyprids of Octolasmis; the list of unique lepadid characters includes: one additional, preaxial seta on the second segment; multiple similar (up to eight) postaxial setae (PS3) on the third segment, unlike all other thoracicans, where there is only a single PS3; the third segment consists almost entirely of the attachment disc, which is distended and surrounded by two parallel rows of radial setae; on the fourth segment the terminal seta E is diminutive. We found no traits in cyprids of Octolasmis that seem to be adaptations to their attachment site within the branchial chamber of swimming crabs and, in particular, no similarities with cyprids of rhizocephalan barnacles, many of which also attach in the gill chamber. The synapomorphies between cyprids of the lepadid species may be adaptations to their life in the neuston.  相似文献   

16.
We here describe the new proalid rotifer species Bryceella perpusilla n. sp. on the basis of light and electron microscopy. The species, certainly representing one of the smallest rotifer and even metazoan species at all, was obtained in January 2008 from terrestrial mosses of North‐west Germany. Bryceella perpusilla n. sp. is distinguished from other species of the genus by the very small size, the slender body outline, the short apical styli, the triangular rostrum, the outward curving, blunt and rod‐shaped toes, the four‐nucleated vitellogermarium, the slender manubria and the caudally directed alulae. With our observations, that can be used for future cladistic analyses of the Proalidae, we are able to define the generic diagnosis of Bryceella more precisely and to give an adapted species key. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Setae are vital in grooming activities and aiding in the removal of epibionts and sedimentary fouling from the body surfaces of decapod crustaceans. Thus, the setal structures and their arrangement on the grooming appendages and sensory structures of the commercially important shrimp, Macrobrachium rosenbergii, were examined using scanning electron microscopy. Macrobrachium rosenbergii is extensively grown in aquaculture and exhibits unique male morphological forms, termed morphotypes. The three male morphotypes are termed blue‐clawed males, orange‐clawed males, and small‐clawed or undifferentiated males and all three differ in their dominance, behavior, body morphology, and reproductive success. Seven setal types, two of which have never been described in the literature, are identified on the grooming appendages (third maxillipeds, first, second, and fifth pereopods) and antennae: simple, serrate, serrulate, spiniform, pappose, crinoid, and spinulate. The latter two setae are newly identified. Certain setal types, such as serrate and serrulate setae were located and associated with specific grooming appendages such as the first pereopods. The types of setae on the grooming appendages varied among females and male morphotypes and the novel setal types (crinoid and spinulate) were found only on two of the male morphotypes. A literature review of terminology related to the structure of setae and setal types in decapod crustaceans is offered as the usage of various terms is ambiguous and conflicting in the literature. The intention of this review is to provide future authors with a comprehensive collection of terms and images that can be used to describe various aspects of setal morphology in decapods. J. Morphol. 275:634–649, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
19.
Heterosaccus lunatus parasitizes the portunid crab, Charybdis callianassa in Moreton Bay, Australia. With the host crabs maintained at 22.5 degrees C this sacculinid rhizocephalan released larval broods every 6-7 days. During July-August 1996 and particularly August 1999 such broods showed the change-over from male only larvae in the early broods to females only in the later broods. As the host crabs were maintained under similar aquarium conditions in both years it is concluded that the light/dark cycle is the principal cue triggering this larval sex reversal. Oogenesis in the parasite externa is somehow controlled to produce two different sized ova - male larvae develop from large ova and females from small ova. A working hypothesis outlining how sex is probably determined for the larvae of sacculinids is erected. H. lunatus is considered the ideal sacculinid for the further experimental work necessary to verify the proposed sex-determining mechanism and its control processes. Measurements of the maximum swimming speeds of H. lunatus male and female cyprids showed the larger males to be the faster in absolute terms (27.95 compared with 17.60 mm s(-1), respectively), however, the calculated relative speeds were almost identical at approximately 90 body lengths s(-1). Settlement experiments confirmed that female H. lunatus cyprids settle only on the gills of C. callianassa; these cyprids needed to be at least 2 days old before they were able to settle.  相似文献   

20.
Larval development of the rhizocephalanSacculina polygenea (Crustacea: Cirripedia: Rhizocephala) parasitizing the coastal crabHemigrapsus sanguineus was studied in Vostok Bay, the Sea of Japan. At 22–23°C, the entire cycle of larval development takes 2.5 days and includes five naupliar stages and one cypris stage. Like other rhizocephalans, the larvae ofS. polygenea are lecithotrophic and only grow slightly in size in the course of development, and like all sacculinids, they have no flotation collar. The naupliar stages IV and V have a tubercle between the furcal rami; this tubercle is absent in the larvae of the genusPeltogasterella, but it has been described inS. carcini. The first seta of the antennule only disappears completely at the fourth stage, although it is markedly reduced at the third stage. No morphological differences, except differences in size, are found between male and female nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号