首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is much more difficult for tubulin from plant sources to polymerize in vitro than tubulin from animal sources. Taxol, a most widely used reagent in microtubule studies, enhances plant microtubule assembly, but hinders microtubule dynamics. Dimethyl sulfoxide (DMSO), a widely used reagent in animal microtubule studies, is a good candidate for the investigation of plant microtubule assembly in vitro. However, proper investigation is lacking about the effects of DMSO on plant microtubule assembly in vitro. In the present study, DMSO was used to establish optimal conditions for the polymerization of plant tubulin. Tubulin, purified from lily pollen, polymerizes into microtubules at a critical concentration of 1.2 mg/mL in the presence of 10% DMSO. The polymers appear to have a normal microtubule structure, as revealed by electron microscopy. In the presence of 10% DMSO, microtubule polymerization decreases when the pH of the medium is increased from 6.5 to 7.4. Both the polymerization rate and the mass of the polymers increase as temperature increases from 25 to 40 ℃. Tubulin polymerizes and depolymerizes along with cycling of temperature, from 37 to 4 ℃, or following the addition to or the removal of Ca^2 from the medium. When incubated with nuclei isolated from tobacco BY-2 suspension cells, tubulin assembles onto the nuclear surface in the presence of 10% DMSO. Labeling lily pollen tubulin with 5- (and 6-) carboxytetramethyl-rhodamine succinimidyl ester (NHS-rhodamine) was performed successfully in the presence of 10% DMSO. Labeled tubulin assembles into a radial structure on the surface of BY-2 nuclei. The polymerization of lily pollen tubulin is also enhanced by microtubule-associated proteins from animal sources in the presence of 10% DMSO. All the experimental results indicate that plant tubulin functions normally in the presence of DMSO. Therefore, DMSO is an appropriate reagent for plant tubulin polymerization and investigation of plant microtubules in vitro.  相似文献   

2.
Co-localization of microtubule (MT) and muscle myosin (MHC) myofibril immunofluoresoonoe in developing myotubes of chicken skeletal muscle cultures was observed by using double staining of tubulin and MHC indirect immunofluorescence.120-tetradecanoyl-phorbol-12-acetate (TPA) selectively and reversibly blocks myofibrillogenesis and alters the morphology of myotubes in to myosacs where MTs are present in radiating pattern.When the arrested myogenic cells recover and start myofibrillogenesis after released from TPA,prior to the emergence of myofibrils,the pre-ecisting MTs become bipolarly aligned coincidently with the tubular restoration of cell shape.Single nascent myofibrils overlapping with MTs extend into the base of growth tips where MTs go farther to the end of the tips.That MT might act as scaffold in guiding the bipolar elongation of the growing myofibrils was suggested.Taxol and colcemid disturbed MT polymerization and disposition,and interfered with the normal spatial assembly of myofibrils in developing myotubes.  相似文献   

3.
Microtubule-associated protein tau is considered to play roles in many neurodegenera-tive diseases including some transmissible spongiform encephalopathies.To address the possible molecular linkage of prion protein(PrP) and tau,a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immuno-precipitation.We found tau protein interacted with various style prion proteins such as native prion protein(PrPC) or protease-resistant isoform(PrPSc) .Co-localization signals of tau and PrP were found in the CHO cell tranfected with both PrP and tau gene.The domain of interaction with tau was located at N-terminal of PrP(residues 23 to 91) .The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs.  相似文献   

4.
The microtubule preprophase bands (PPBs) participate in the sequence of events to position cell plates in most plants. However, the mechanism of PPB formation remains to be clarified. In the present study, the organization of PPBs in Arabidopsis suspension cultured cells was investigated by confocal laser scanning microscopy combined with pharmacological treatments of reagents specific for the cytoskeleton elements. Double staining of F-actin and microtubules (MTs) showed that actin filaments were arranged randomly and no colocalization with cortical MTs was observed in the interphase cells. However, cortical actin filaments showed colocalization with MTs during the formation of PPBs. A broad actin band formed with the broad MT band in the initiation of PPB and narrowed down together with the MT band to form the PPB. Nevertheless, broad MT bands were formed but failed to narrow down in cells treated with the F-actin disruptor latrunculin A. In contrast, in the presence of the F-actin stabilizer phalloidin, PPB formation did not exhibit any abnormality. Therefore, the integrity, but not the dynamics, of the actin cytoskeleton is necessary for the formation of normal PPBs. Treatment with 2, 3-butanedine monoxime, a myosin inhibitor, also resulted in the formation of broad MT bands, indicating that actomyosin may be involved in the rearrangement of MTs to form the PPBs. Double staining of MTs and myosin revealed that myosin concentrated on the PPB region during PPB formation. It is suggested that the actin cytoskeleton at the PPB site may serve as a rack to transport cortical MTs by using myosin when the broad MT band narrows down to form the PPB.  相似文献   

5.
Doppel (Dpl) is a prion (PrP)-like protein due to the structural and biochemical similarities; however, the natural functions of Dpl and PrP remain unclear. In this study, a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes. Furl-length and various truncated human Dpl and PrP proteins were expressed and purified from Escherichia coil Supplement of the full-length Dpl onto human neuroblastoma cell SH-SY5Y induced remarkable cytotoxicity, and the region responsible for its cytotoxicity was mapped at the middle segment of Dpl [amino acids (aa) 81-122]. Interestingly, DpMnduced cytotoxicity was antagonized by the presence of full- length wild-type PrP. Analysis on fragments of PrP mutants showed that the N-terminal fragment (aa 23- 90) of PrP was responsible for the protective activity. A truncated PrP (PrPA32-121) with similar secondary structure as Dpl induced DpMike cytotoxicity on SH- SY5Y cells. Furthermore, binding of copper ion could enhance the antagonizing effect of PrP on Dpi-induced cytotoxicity. Apoptosis assays revealed that cytotoxicity induced by Dpl occurred through an apoptotic mechanism. These results suggested that the function of Dpl is antagonistic to PrP rather than synergistic.  相似文献   

6.
7.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cuItlvars (I.e. CIM-240 and S-12) was Investigated. The incidence of disease attack was found to be 100% In the S-12 cuItlvar and 16% in the CIM-240 cuItivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antlsera-treated cell sap. The CLCuV Impaired the accumulation of different nutrients in both cuItivars. A marked decrease in the accumulation of Ca^2+ and K^+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na^+, N, and P. It was observed that the curling of leaf margins in CLCuV-Infected plants was associated with the leaf Ca^2+ content; leaf curling was severe in plants with a significant reduction In Ca^2+ content. Moreover, leaf K&+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

8.
Xanthine oxidase (XO), a key enzyme in purine metabolism, produces reactive oxygen species causing vascular injuries and chronic heart failure. Here, copper's ability to alter XO activity and structure was investigated in vitro after pre-incubation of the enzyme with increasing Cue+ concentrations for various periods of time. The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions. Structural alterations were assessed by electronic absorption, fluorescence, and circular dichroism spectroscopy. Results showed that Cu^2+ either stimulated or inhibited XO activity, depending on metal concentration and preincubation length, the latter also determining the inhibition type. Cu^2+-xo complex formation was characterized by modifications in XO electronic absorption bands, intrinsic fluorescence, and α-helical and β-sheet content. Apparent dissociation constant values implied high- and low-affinity Cu^2+ binding sites in the vicinity of the enzyme's reactive centers. Data indicated that Cu^2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleotide centers, changes in secondary structure, and moderate activity inhibition; binding to low affinity sites caused alterations around all XO reactive centers including FeS, changes in tertiary structure as reflected by alterations in spectral properties, and drastic activity inhibition. Stimulation was attributed to transient stabilization of XO optimal conformation. Results also emphasized the potential role of copper in the regulation of XO activity stemming from its binding properties.  相似文献   

9.
The C3 halophyte Suaeda salsa was used to investigate the roles of Ca^2+, Ca^2+ channels, and calmodulin (CAM) in betacyanin metabolism. Seeds of S. salsa were cultured in both the dark and light for 3 days. The fresh weight and betacyanin content were much higher in S. salsa seedlings formed in the dark than in seedlings formed in the light. The addition of Ca^2+ to the half-strength MS nutrient solution promoted betacyanin accumulation in the dark, whereas Ca^2+ depletion by EGTA suppressed the dark-induced betacyanin accumulation in shoots of S. salsa. The Ca^2+ channel blocker LaCl3 also inhibited dark-induced betacyanin accumulation. The highest activity of CaM and the maximum betacyanin content decreased by 51% and 45%, respectively, in shoots of S. salsa seedlings treated with the potent CaM antagonist chlorpromazine in the dark. Furthermore, the other CaM antagonist N-(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide (W-7) also inhibited the activity of CaM and dark-dependent betacyanin accumulation, whereas its less active structural analog N-(6-aminohexyl)- 1-naphthalenesulfonamide (W-5) had little effect on the responses to dark of S. salsa seedlings. These results suggest that Ca^2+, Ca^2+-regulated ion channels, and CaM play an important role in dark-induced betacyanin accumulation in the shoots of the C3 halophyte S. salsa.  相似文献   

10.
Microtubule associated proteins (MAPs) are proteins that physically bind to microtubules in eukaryotes. MAPs play important roles in regulating the polymerization and organization of microtubules and in using the ensuing microtubule arrays to carry out a variety of cellular functions. In plants, MAPs manage the construction, repositioning, and dismantling of four distinct microtubule arrays throughout the cell cycle. Three of these arrays, the cortical array, the preprophase band, and the phragmoplast, are prominent to plants and are responsible for facilitating cell wall deposition and modification, transducing signals, demarcating the plane of cell division, and forming the new cell plate during cytokinesis. This review highlights important aspects of how MAPs in plants establish and maintain microtubule arrays as well as regulate cell growth, cell division, and cellular responses to the environment.  相似文献   

11.
To improve heterologous gene expression in Trichoderma reesei, a set of optimal artificial cellobiohydrolase I gene (cbhl) promoters was obtained. The region from -677 to -724 with three potential glucose repressor binding sites was deleted. Then the region from -620 to -820 of the modified cbhl promoter, including the CCAAT box and the Ace2 binding site, was repeatedly inserted into the modified cbhl promoter, obtaining promoters with copy numbers 2, 4, and 6. The results showed that the glucose repression effects were abolished and the expression level of the glucuronidase (gus) reporter gene regulated by these multi-copy promoters was markedly enhanced as the copy number increased simultaneously. The data showed the great promise of using the promoter artificial modification strategy to increase heterologous gene expression in filamentous fungi and provided a set of optional high-expression vectors for gene function investigation and strain modification.  相似文献   

12.
The low-molecular-weight protein tyrosine phospha- tases (PTPase) exist ubiquitously in prokaryotes and eukaryotes and play important roles in the regulation of physiological activities. We report here the expression, purification and characterization of an active and soluble PTPase from Thermus thermophilus HB27 in Escherichia coli. This PTPase has an optimum pH range of 2.8-4.8 when using p-nitrophenyl phosphate as the substrate. The thermal inactivation results indicate a high thermal stability of this enzyme, with the optimum temperature of 75℃ for activity. It can be activated by Mn^2+, Mg^2+, Ca^2+, Ba^2+, and Ni^2+, but inhibited by Zn^2+, Cu^2+, Cl^-, and SO^2-. These results suggest that this heat-resistant PTPase may play important roles in vivo in the adaptation of the microorganism to extreme temperatures and specific nutritional conditions.  相似文献   

13.
The most essential and crucial step during the pathogenesis of transmissible spongiformencephalopathy is the conformational change of cellular prion protein (PrP~C) to pathologic isoform (PrP~(Sc)).Alot of data revealed that caveolae-like domains (CLDs) in the cell surface were the probable place where theconversion of PrP proteins happened.Apolipoprotein E (ApoE) is an apolipoprotein which is considered toplay an important role in the development of Alzheimer's disease and other neurodegenerative diseases byforming protein complex through binding to the receptor located in the clathrin-coated pits of the cell surface.In this study,a 914-bp cDNA sequence encoding human ApoE3 was amplified from neuroblastoma cell lineSH-SY5Y.Three human ApoE isomers were expressed and purified from Escherichia coli.ApoE-specificantiserum was prepared by immunizing rabbits with the purified ApoE3.GST/His pull-down assay,immunoprecipitation and ELISA revealed that three full-length ApoE isomers interact with the recombinantfull-length PrP protein in vitro.The regions corresponding to protein binding were mapped in the N-terminalsegment of ApoE (amino acid 1-194) and the N-terminal of PrP (amino acid 23-90).Moreover,the recombinantPrP showed the ability to form a complex with the native ApoE from liver tissues.Our data provided directevidence of molecular interaction between ApoE and PrP.It also supplied scientific clues for assessing thesignificance of CLDs on the surface of cellular membrane in the process of conformational conversion fromPrP~C to PrP~(Sc) and probing into the pathogenesis of transmissible spongiform encephalopathy.  相似文献   

14.
The genes of the heavy and light chain variable region (VH, VL) of Z12 antibody against hTNF-α were cloned, and according to the translated sequence of amino acids, the spatial structures of VH and VL domains were modeled by using homology-based modeling method, followed by constructing the whole three-dimensional structure of Fv fragment. The complex model of Fv interacting with hTNF-α was gained with computer-guided molecular docking method, based on which, it was predicted that the epitope recognized by Z12 was from 141 to 146 of hTNF-α. hTNF-α molecule was divided into two fragments of N-terminal region from 1 to 91 and C-terminal region from 92 to 157 with prokaryotic expression. The measured results suggested that the antigenic epitope recognized by Z12 antibody was located in the C-terminal region 92-157 of hTNF-α, proving the predicted result reliable preliminarily. Further experimental results showed that after hTNF-α 141-146 residues were deleted, Z12 antibody almost lost the ability to recognize the mutant, suggesting that the amino acid residues from 141 to 146 of hTNF-α were specially recognized by Z12 antibody.  相似文献   

15.
Mitosis and microtubule organizational changes in rice root-tip cells   总被引:1,自引:0,他引:1  
The pattern of change of the microtubule cytoskeleton of the root-tip cells of rice during mitosis was studied using immunofluorescence technic and confocal laser scanning microscopy. All the major stages of ceil division including preprophase, prophase, metaphase, anaphase and telophase were observed. The most significant finding was that in the preprophase cells microtubules radiating from the nuclear surface to the cortex were frequently seen. During development these microtubules became closely associated with the preprophase band and prophase spindie indicating that the microtubules radiating from the nuclear surface, the preprophase band and the prophazc spindle were structurally and functionally closely related to each other. Granule-like anchorage sites for the radiating microtubules at the muclear surface were often seen and the possibility that these gramle-like anchorage sites might represent the microtubule organizing centres was discussed.  相似文献   

16.
It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged a-tubulin 6 (GFP-TUA6) in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a de- crease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6 overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFP- TUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development. Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls.  相似文献   

17.
Huntington's disease (HD) is caused by an expansion of polyglutamine tract in N-terminus of huntingtin (htt). The mutation of htt leads to dysfunction and premature death of striatal and cortical neurons. However, the effects of htt mutation on glia remain largely unknown. This study aimed to establish a glia HD model using an adenoviral vector to express wild-type and mutant N-terminal huntingtin fragment 1-552 amino acids (htt552) in rat primary cortical astrocytes. We have evaluated optimal conditions for the infection of astrocytes with adenoviral vectors, and the kinetics of the expression of htt552 in astrocytes. The majority of astrocytes expressed the transgene after infection. At 24 h postinfection, the highest rate of infection was 89 ± 3% for the wild-type (htt552-18Q) with a multiplicity of infection (m.o.i.) of 80, and the highest rate of infection was 91 ± 4% for the mutant type (htt552-100Q) with the same viral dose. The duration of expression of htt552 lasted for about 7 days with a relatively high level from 1 to 4 days post-infection. Mutant huntingtin (htt552-100Q) produced the characteristic HD pathology after 3 days by the appearance of cytoplasmic aggregates and intranuclear inclusions. The result of MTT (3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay showed that the inhibition of viability by virus on astrocytes was also dose-dependent. To obtain high infection rate and low toxicity, the viral dose with an m.o.i, of 40 was optimal to our cell model. The present study demonstrates that adenoviral-mediated expression of mutant htt provides an advantageous system for histological and biochemical analysis of HD pathogenesis in primary cortical astrocyte cultures.  相似文献   

18.
We reported previously that the protein SB401 from Solanum berthaultii binds to and bundles both microtubules and F-actin. In the current study, we investigated the regulation of SB401 activity by its phosphorylation. Our experimental results showed that the phosphorylation of SB401 by casein kinase II (CKII) downregulates the activities of SB401, namely the bundling of microtubules and enhancement of the polymerization of tubulin. However, phosphorylation of SB401 had no observable effect on its bundling of F-actin. Further investigation using extract of potato pollen indicated that a CKIl-like kinase may exist in potato pollen. Antibodies against CKII alpha recognized specifically a major band from the pollen extract and the pollen extract was able to phosphorylate the SB401 protein in vitro. The CKIl-like kinase showed a similar ability to downregulate the bundling of microtubules. Our experiments demonstrated that phosphorylation plays an important role in the regulation of SB401 activity. We propose that this phosphorylation may regulate the effects of SB401 on microtubules and the actin cytoskeleton.  相似文献   

19.
20.
Phenoloxidase (PO) from ink sacs of Octopus ocellatus was purified by gel-filtration and ion-exchange chromatography, and characterized in terms of its biochemical and enzymatic properties by using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate. It was found that prophenoloxidase from O. ocellatus was isolated as a heterodimeric protein of 153.8 kDa, and two subunits of 75.6 and 73.0 kDa were often detected in preparations after SDS activation. The PO-like activity showed optimal pH of 7.0, optimal temperature of 40℃, and an apparent Km value of 3.1 mM on L-DOPA, and 6.3 mM on catechol, respectively. The PO-like activity was extremely sensitive to 1-phenyl-2-thiourea and sodium suifite, and very sensitive to ascorbic acid, thiourea, citric acid, and benzoic acid. Together with its specific enzyme activity on catechol and L-DOPA, it can be concluded that the Octopus PO is most probably a typical o-diphenoloxidase. The PO-fike activity was also strongly inhibited by Cu^2+, Zn^2+, ethylenediaminetetraacetic acid and diethyldithiocarbamate (DETC), and the DETC-inhibited PO-like activity could be perfectly restored by Cu^2+. These results indicated that Octopus PO is most probably a copper-containing metalloenzyme. All these results implied that the PO from O. ocellatus has the properties of a catechol-type copper-containing o-diphenoloxidase which functions not only as a catalytic enzyme in melanin production in ink sacs but also as a humoral factor in host defense via melaninization as in other crustaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号