首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xyiose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg^2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.  相似文献   

2.
3.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

4.
The early evolution of angiosperms has been a focus of intensive research for more than a century. The Yixian Formation in western Liaoning yields one of the earliest angiosperm macrofioras. Despite multitudes of angiosperm fossils uncovered, including Archaefructus and Sinocarpus, no bona fide normal flower has been dated to 125 Ma (mega-annum) or older. Here we report Callianthus dilae gen. et sp. nov. from the Yixian Formation (Early Cretaceous) in western Liaoning, China as the earliest normal flower known to date. The flower demonstrates a typical floral organization, including tepals, androecium, and gynoecium. The tepals are spatulate with parallel veins. The stamens have a slender filament, a globular anther, bristles at the anther apex, and in situ round-triangular pollen grains. The gynoecium is composed of two stylate carpels enclosed in a fleshy envelope, and develops into a "hip" when mature. Since the well-accepted history of angiosperms is not much longer than 125 Ma, Callianthus together with Chaoyangia, Archaefructus and Sinocarpus from the Yixian Formation demonstrate a surprisingly high diversity of angiosperms, implying a history of angiosperms much longer than currently accepted.  相似文献   

5.
Impacts of salinity become severe when the soil is deficient in oxygen. OxygaUon (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na^+ and CI^- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na^+ or CI^- concentration. Oxygation invariably increased, whereas salinity reduced the K^+: Na^+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

6.
Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression. Some core PeG proteins, such as Enhancer of Zeste (E(z)), Suppressor of Zeste (12) (Su(z)12), and Extra Sex Combs (ESC), are conserved in plants. The rice genome contains two E(z)-Iike genes, OsiEZ1 and OsCLF, two homologs of Su(z)12, OsEMF2a and OsEMF2b, and two ESC-like genes, OsFIE1 and OsFIE2. OsFIE1 is expressed only in endosperm; the maternal copy is expressed while the paternal copy is not active. Other rice PcG genes are expressed in a wide range of tissues and are not imprinted in the endosperm. The two E(z)-Iike genes appear to have duplicated before the separation of the dicots and monocots; the two homologs of Su(z)12 possibly duplicated during the evolution of the Gramineae and the two ESC- like genes are likely to have duplicated in the ancestor of the grasses. No homologs of the Arabidopsis seed-expressed PcG genes MEA and FIS2 were identified in the rice genome. We have isolated T-DNA insertion lines in the rice homologs of three PcG genes. There is no autonomous endosperm development in these T-DNA insertion lines. One line with a T-DNA insertion in OsEMF2b displays pleiotropic phenotypes including altered flowering time and abnormal flower organs, suggesting important roles in rice development for this gene.  相似文献   

7.
8.
The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resem- bling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.  相似文献   

9.
10.
Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reducrases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then de- scribed. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the ex- pression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.  相似文献   

11.
Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-1ike sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-1ike sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes, Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EM F2NRN2 divergence in accordance with species relationship. Existence of EMF2-1ike sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate seque  相似文献   

12.
Ghrelin, a 28 amino acid gut brain peptide, acts as an endogenous ligand for its receptor, the growth hormone secretagogue receptor, to exercise a variety of functions ranging from stimulation of growth hormone secretion, regulation of appetite and energy metabolism, and cell protection to modulation of inflammation. This review summarizes the advance in the regulation of ghrelin expression and secretion. We introduce the structure of ghrelin promoter, the processing and modification of ghrelin precursor, and the regulation mechanism in these processes. Then we discuss factors found to be important in the regulation of ghrelin production, including nutrients, hormones, and autonomic nervous system. Finally, we outline the alteration in the level of ghrelin in certain physiological and pathological status.  相似文献   

13.
Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics ofArabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.  相似文献   

14.
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclearencoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V/itorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.  相似文献   

15.
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.  相似文献   

16.
Taeniid tapeworm Echinococcus granulosus is the causative agent of Echinococcosis, an important zoonosis with worldwide distribution. In this study, a diagnostic antigen P-29 was cloned from E. granulosus and expressed in Escherichia coil Sequence analysis showed that EgP-29 contains 717-bp open reading frame and encodes a protein of 238 amino acid residues with a predicted molecular weight of 27.1 kDa. The recombinant EgP-29 (rEgP-29) could be recognized with antimice sera in Western blotting. The specific antibody was detected by enzyme-linked immunosorbent assay. Mice vaccinated with rEgP-29 and challenged intrapero itoneally with E. granulosus protoscoleces revealed sig- nificant protective immunity of 96.6% (P〈0.05), compared with the control group. Thus, rEgP-29 protein is a promising candidate for an effective vaccine to prevent secondary echinococcosis.  相似文献   

17.
Biogenesis of photosynthetic pigment/protein complexes is a highly regulated process that requires various assisting factors. Here, we report on the molecular analysis of the Pitt gene (sir1644) from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) that encodes a membrane-bound tetratricopeptide repeat (TPR) protein of formerly unknown function. Targeted inactivation of Pitt affected photosynthetic performance and light-dependent chlorophyll synthesis. Yeast two-hybrid analyses and native PAGE strongly suggest a complex formation between Pitt and the light-dependent protochlorophyllide oxidoreductase (POR). Consistently, POR levels are approximately threefold reduced in the pitt insertion mutant. The membrane sublocalization of Pitt was found to be dependent on the presence of the periplasmic photosystem Ⅱ (PSⅡ) biogenesis factor PratA, supporting the idea that Pitt is involved in the early steps of photosynthetic pigment/protein complex formation.  相似文献   

18.
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 (gnl2-1) and gn12-2 in Arabidopsis thaliana, in which the pollen grains failed to germinate in vitro and in vivo. GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination.  相似文献   

19.
Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F685/F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号