首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.  相似文献   

2.
3.
The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysaccharides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrils, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Csl) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incrementally unravel the mechanisms of Golgi polysaccharide biosynthesis.  相似文献   

4.
G protein-coupled receptors (GPRs) are highly related to oncogenesis and cancer metastasis. G protein-coupled re- ceptor 137 (GPR137) was initially reported as a novel orphan GPR about 10 years ago. Some orphan GPRs have been implicated in human cancers. The aim of this study is to investigate the role of GPR137 in human colon cancer. Expression levels of GRP137 were analyzed in different colon cancer cell lines by quantitative polymerase chain re- action and western blot analysis. Lentivirus-mediated short hairpin RNA was specifically designed to knock down GPR137 expression in colon cancer cells. Cell viability was measured by methylthiazoletetrazolium and colony forma- tion assays. In addition, cell cycle characteristic was investi- gated by flow cytometry. GRP137 expression was observed in aH seven colon cancer cell lines at different levels. The mRNA and protein levels of GPR137 were down-regulated in both HCTll6 and RKO cells after lentivirus infection. Lentivirus-mediated silencing of GPR137 reduced the proliferation rate and colonies numbers. Knockdown of GPR137 in both cell lines led to cell cycle arrest in the G0/G1 phase. These results indicated that GPR137 plays an important role in colon cancer cell proliferation. A better understanding of GPR137's effects on signal transduction pathways in colon cancer cells may provide insights into the novel gene therapy of colon cancer.  相似文献   

5.
Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1 (GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution comparable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as demonstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mutant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.  相似文献   

6.
Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major AI resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify AI in the growth medium is frequently questioned. The genotypes of AI-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the AI activities in the solution were 10, 20, and 50 μM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm2 per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate AI toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of AI adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding AI. These findings suggest that protection of cell walls from binding AI by organic acids may contribute significantly to AI resistance.  相似文献   

7.
2D ^13C-^1H HSQC NMR spectroscopy of acetylated cell walls in solution gives a detailed fingerprint that can be used to assess the chemical composition of the complete wall without extensive degradation. We demonstrate how multivariate analysis of such spectra can be used to visualize cell wall changes between sample types as high-resolution 2D NMR loading spectra. Changes in composition and structure for both lignin and polysaccharides can subsequently be interpreted on a molecular level. The multivariate approach alleviates problems associated with peak picking of overlapping peaks, and it allows the deduction of the relative importance of each peak for sample discrimination. As a first proof of concept, we compare Populus tension wood to normal wood. All well established differences in cellulose, hemicellulose, and lignin compositions between these wood types were readily detected, confirming the reliability of the multivariate approach, In a second example, wood from transgenic Populus modified in their degree of pectin methylesterification was compared to that of wild-type trees. We show that differences in both lignin and polysaccharide composition that are difficult to detect with traditional spectral analysis and that could not be a priori predicted were revealed by the multivariate approach. 2D NMR of dissolved cell wall samples combined with multivariate analysis constitutes a novel approach in cell wall analysis and provides a new tool that will benefit cell wall research.  相似文献   

8.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

9.
Katanin, a microtubule-severing enzyme, consists of two subunits:the catalytic subunit P60, and the regulatory subunit P80. In several species, P80 functions in meiotic spindle organization, the flagella biogenesis, the neuronal development, and the male gamete production. However, the P80 function in higher plants remains elusive. In this study, we found that there are three katanin P80 orthologs (OsKTN80a, OsKTN80b, and OsKTN80c) in Oryza sativa L. Overexpression of OsKTN80a caused the retarded root growth of rice seedlings. Further investigation indicates that the retained root growth was caused by the repressed cell elongation in the elongation zone and the stalled cytokinesis in the division zone in the root tip. The in vivo examination suggests that OsKTN80a acts as a microtubule stabilizer. We prove that OsKTN80a, possibly associated with OsKTN60, is involved in root growth via regulating the cell elongation and division.  相似文献   

10.
11.
We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mnl compared with mnl, resulting in a significantly higher cell number in the Mnl endosperm. These data correlate with the previously reported peak levels of the Mn1-encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.  相似文献   

12.
13.
14.
15.
The aim of the present study is to investigate gene expression involved in the signal pathway of MAPK and death signal receptor pathway of FAS in lead- induced apoptosis of testicular germ cells. First, cell viabilities were determined by MTT assay. Second, using single cell gel-electrophoresis test (comet assay) and TUNEL staining technique, apoptotic rate and cell apoptosis localization of testicular germ cells were measured in mice treated with 0.15%, 0.3%, and 0.6% lead, respectively. Third, the immunolocalization of K-ras, c-fos, Fas, and active caspase-3 proteins was determined by immunohistochemistry. Finally, changes in the translational levels of K-ras, c-fos, Fas, and active caspase-3 were further detected by western blot analysis. Our results showed that lead could significantly induce testicular germ cell apoptosis in a dose-dependent manner (P 〈 0.01). The mechanisms were closely related to the increased expressions of K-ras, c-fos, Fas, and active caspase-3 in apoptotic germ cells. In conclusion, K-ras/c-fos and Fas/caspase-3 death signafing receptor pathways were involved in the lead-induced apoptosis of the testicular germ cells in mice.  相似文献   

16.
The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methylesterification status of this polymer on plant life. Demethyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.  相似文献   

17.
The cytotoxicity and antioxidant activity on human hepa toma cell line HepG2 of three flavonoids homogenous com pounds from tartary buckwheat seeds and bran, namely quercetin, isoquercetin, and rutin, were investigated. The total antioxidant competency detection results indicated that the antioxidant capacity of quercetin was the strongest in a biological response system. A [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide] assay showed that quercetin exhibited the strongest cytotoxic effects against the HepG2 cell line. Flow cytometric analysis indicated that quercetin significantly increased the production of reactive oxygen species, and led to the G2/M phase arrest accom panied by an increase of apoptotic cell death after 48 h of incubation. Quercetininduced cell apoptosis was shown to involve p53 and p21 upregulation, Cyclin D1, Cdk2, and Cdk7 downregulation. These results suggested that the in duction of G2/M arrest, apoptosis, and cell death by quer cetin may associate with increased expression of p53 and p21, decrease of Cyclin D1, Cdk2, and Cdk7 levels, and generation of reactive oxygen species in cells. This study will help to better understand and fully utilize medicinal resources of plant flavonoids.  相似文献   

18.
Over the past few decades genetic engineering has been applied to improve cotton breeding. Agrobacterium medicated transformation is nowadays widely used as an efficient approach to introduce exogenous genes into cotton for genetically modified organisms. However, it still needs to be improved for better transformation efficiency and higher embryogenic callus induction ratios. To research further the difference of mechanisms for morphogenesis between embryogenic callus and non-embryogenic callus, we carried out a systematical study on the histological and cellular ultrastructure of Agrobacterium transformed calli. Results showed that the embryogenic callus developed nodule-like structures, which were formed by small, tightly packed, hemispherical cells. The surface of some embryogenic callus was covered with a fibrilar-like structure named extracellular matrix. The cells of embryogenic calli had similar morphological characteristics. Organelles of embryogenic callus cells were located near the nucleus, and chloroplasts degraded to proplastid-like structures with some starch grains. In contrast, the non-embryogenic calli were covered by oval or sphere cells or small clusters of cells. It was observed that cells had vacuolation of cytoplasm and plastids with a well organized endomembrane system. This study aims to understand the mechanisms of embryogenic callus morphogenesis and to improve the efficiency of cotton transformation in future.  相似文献   

19.
20.
目的:探讨NO在肢体缺血/再灌注(LI/R)后肾组织细胞凋亡发生中的作用。方法:采用我室常规方法复制大鼠LI/R模型,采用生物化学方法检测血液及肾组织中一氧化氮及其相关指标,利用免疫组织化学方法及原位末端标记法(TUNEL)检测各组动物肾组织细胞凋亡情况。结果:与对照组比较,大鼠LI/R后4h,肾小管上皮细胞、血管内皮细胞呈凋亡改变;预先给予L-Arg的大鼠,凋亡细胞数明显减少;而经L-NAME处理的大鼠,凋亡细胞数明显增多。结论:大鼠LI/R后肾损伤可能与细胞凋亡增强有关;NO可通过影响凋亡基因的激活及相关蛋白的表达减轻LI/R后肾组织损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号