首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) shows increased expression in a wide variety of human cancers, and its over-expression is associated with enhanced migration, invasion, and in vivo metastasis. Here, we reported that CEACAM6 was up-regulated in gastric cancer (GC) cell lines and tumor tissues. Overexpression of CEACAM6 in MKN-45 and SGC-7901 GC cells promoted migration and invasion in vitro and metastasis in athymic mice, whereas migration and invasion of MKN-28 and SNU-16 GC cells were suppressed by knockdown of CEACAM6. We also observed that steroid receptor coactivator (C-SRC) phosphorylation was increased when CEACAM6 was over-expressed in SGC-7901 cells. Taken together, these results suggested that CEACAM6 functions as an oncoprotein in GC and may be an important metastatic biomarker and therapeutic target.  相似文献   

2.
The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.  相似文献   

3.
Lutheran blood group glycoprotein (Lu-gp) is a specific α5 laminin receptor that is linked by binding to its receptor in the basement membrane matrix. Although the biological function of Lu-gp is unknown, its special affinity with laminin in the chain suggests that it plays an important role in human development and physiological processes. As the interaction between Lu-gp and laminin is further investigated, their expression may be found to play an important role in tumor invasion and metastasis. Laminin receptors help cells adhere, receive and conduct extracellular information into cells, mainly through MAPK pathways, including ERKs, p38MAPK, etc., affecting the degradation of the extracellular matrix and enhancing tumor cell infiltration and metastasis. Present researches in cancers mainly focus on aspects relating to laminin, but largely do not pay attention to the Lutheran blood group antigen, basal cell adhesion molecule. This paper focuses on the abnormal expression of the laminin receptor, that is, the Lutheran blood group antigen, in cancers, which is of great significance to the mechanism of cancer invasion and metastasis, and for finding effective treatment methods for cancers.  相似文献   

4.
Antisense Tiam1 down-regulates the invasiveness of 95D cells in vitro   总被引:3,自引:0,他引:3  
As a specific guanine nucleotide exchange factor of Rac 1, Tiam 1 (T-lymphoma invasion and metastasis inducing protein 1) is involved in a number of cellular events, such as cytoskeleton reorganization, cell adhesion, and cell migration. Since Tiaml was implicated in the invasion and metastasis of T-lymphoma cells and breast tumor cells, we compared the expression level of Tiaml in two human giant-cell lung carcinoma cell strains with high or low metastasis potential, and found that Tiaml expression level in high-metastatic 95D cells was higher than that in low-metastatic 95C cells. To further confirm the role of Tiam I in invasion and metastasis, we constructed the antisense Tiaml expression plasmid (pcDNA3-anti-Tiaml), which was transfected into 95D cells. A stable transfected clone with decreased Tiaml expression was screened and selected for further research. Transwell assay showed that down-regulation of endogenous Tiam1 by anti-Tiam1 can reduce the in vitro invasiveness of 95D cells. Our results suggested that Tiam1 signaling contributed to the invasion and metastasis of the human giant-cell lung carcinoma cells.  相似文献   

5.
Endoglin, also known as cluster of differentiation CD105, was originally identified 25 years ago as a novel marker of endothelial cells. Later it was shown that endoglin is also expressed in pro-fibrogenic cells including mesangial cells, cardiac and scleroderma fibroblasts, and hepatic stellate cells. It is an integral membranebound disulfide-linked 180 kDa homodimeric receptor that acts as a transforming growth factor-β(TGF-β) auxiliary co-receptor. In humans, several hundreds of mutations of the endoglin gene are known that give rise to an autosomal dominant bleeding disorder that is characterized by localized angiodysplasia and arteriovenous malformation. This disease is termed hereditary hemorrhagic telangiectasia type Ⅰ and induces various vascular lesions, mainly on the face, lips, hands and gastrointestinal mucosa. Two variants of endoglin(i.e., S- and L-endoglin) are formed by alternative splicing that distinguishes from each other in the length of their cytoplasmic tails. Moreover, a soluble form of endoglin, i.e.,sol-Eng, is shedded by the matrix metalloprotease-14 that cleaves within the extracellular juxtamembrane region. Endoglin interacts with the TGF-β signaling receptors and influences Smad-dependent and-independent effects. Recent work has demonstrated that endoglin is a crucial mediator during liver fibrogenesis that critically controls the activity of the different Smad branches. In the present review, we summarize the present knowledge of endoglin expression and function, its involvement in fibrogenic Smad signaling, current models to investigate endoglin function, and the diagnostic value of endoglin in liver disease.  相似文献   

6.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

7.
MicroRNAs (miRNAs) function as key regulators of gene expression in various cancers. In this study, the aim is to explore the roles and regulation mechanism of miR-181c in neuroblastoma (NB) cells. We found that miR-181c was downregulated in metastatic NB tissues, compared with primary NB tissues. Then functional studies indicated that miR-181 c overexpression inhibited NB cell proliferation, migration, and invasion, while miR-181c inhibition increased cell proliferation, migration, and invasion. EGFP reporter assay, real-time polymerase chain reaction and western blot analysis validated that Smad7 was a direct target of miR- 181c. MiR-181c reduced Smad7 expression at both mRNA and protein levels. Finally, functional assays showed that the effect of Smad7 knockdown on cells was similar to that of miR-181c overexpression. Importantly, Smad7 overexpression could restore the antitumor effects that were induced by miR-181 c. In conclusion, our results demonstrated that miR- 181c inhibits NB cell growth and metastasis-related traits through the suppression of SmadT, functioning as a tumor suppressor. Moreover, our results suggested that miR-181c may serve as an important therapeutic target for NB patients.  相似文献   

8.
9.
Cancer invasion and metastasis, involving a variety of pathological processes andcytophysiological changes,contribute to the high mortality of lung cancer.The type 1 insulin-like growthfactor receptor (IGF-1R),associated with cancer progression and invasion,is a potential anti-invasion andanti-metastasis target in lung cancer.To inhibit the invasive properties of lung cancer cells,we successfullydown-regulated IGF-1R gene expression in A549 human lung cancer cells by small interfering RNA (siRNA)technology,and evaluated its effects on invasion-related gene expression,tumor cell in vitro invasion,andmetastasis in xenograft nude mice.A549 cells transfected with a plasmid expressing hairpin siRNA forIGF-1R showed a significantly decreased IGF-1R expression at the mRNA level as well as the proteinlevel.In biological assays,transfected A549 cells showed a significant reduction of cell-matrix adhesion,migration and invasion.Consistent with these results,we found that down-regulation of IGR-1Rconcomitantly accompanied by a large reduction in invasion-related gene expressions,including MMP-2,MMP-9,u-PA,and IGF-1R specific downstream p-Akt.Direct tail vein injections of plasmid expressinghairpin siRNA for IGF- 1R significantly inhibited the formation of lung metastases in nude mice.Our resultsshowed the therapeutic potential of siRNA as a method for gene therapy in inhibiting lung cancer invasionand metastasis.  相似文献   

10.
TGF-β and cancer: Is Smad3 a repressor of hTERT gene?   总被引:1,自引:0,他引:1  
Li H  Xu D  Toh BH  Liu JP 《Cell research》2006,16(2):169-173
  相似文献   

11.
It was documented that type IV collagenase with two subtypes of 72 ku/MMP-2 and 92 ku/MMP-9 plays an important role in tumor invasion and metastasis. The endoplasmic reticulum (ER)- retained, single chain Fv antibody fragment (scFv) was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acids (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector. The resulting plasmid was sequenced and then introduced into PG cells, a highly metastatic human lung cancer cell line, by lipofectAMINE method. The result of intrabody gene therapy showed that type IV collegenase expression was down regulated significantly as measured by ELISA. The biological behavior of PG cell, such as the ability of in vitro invasion through Matrigel, colony formation on soft agar, was also inhibited by scFv M97 transfection. Animal experiments in a xenograft model of human lung cancer  相似文献   

12.
13.
Lung cancer is one of the most lethal cancers in China because of high incidence and high mortality. Cyclooxygenase-2 (COX-2) and vessel endothelial growth factor C (VEGF-C) were found to play an important role in lymphangiogenesis of malignant tumors. In this study, we investigated whether lymphatic microvessel density (LMVD) is related to the prognosis in non-small cell lung cancer (NSCLC) patients, and the expressions of COX-2 and VEGF-C so as to determine the possible role of COX-2 and VEGF-C in NSCLC lymphangiogenesis. Sixty-five formalin-fixed paraffin embedded tissue samples of NSCLC were evaluated for COX-2 and VEGF-C by immunohistochemical staining. To assess tumor lymphangiogenesis, LMVD was determined by immunohistochemical staining of VEGFR-3 polyclonal antibody. The relationship among COX-2 and VEGF-C expression, LMVD, and clinicopathologic parameters was analyzed. Among the 65 samples, high LMVD was significantly associated with lymph node metastasis and poor survival. Multivariate survival analysis showed that LMVD value and lymph node metastasis were independent prognostic factors. The expression level of COX-2 and VEGF-C was significantly higher than those of the adjacent tissues. COX-2 and VEGF-C expressions in NSCLC significantly correlated with lymph node metastasis, but not with patient gender, age, tumor size, or tumor, nodes, metastasis classification stage. The mean LMVD value of COX-2- or VEGF-C-positive tumors was higher than that of COX-2- or VEGF-C-negative tumors. A significant correlation was found between the expressions of COX-2 and VEGF-C. This study suggests that LMVD may be one of the important prognostic factors for NSCLC patients. VEGF-C might play an important role in the COX-2 lymphangiogenic pathway. COX-2 and VEGF-C may play an important role in tumor progression by stimulating lymphangiogenesis. The inhibition of lymphangiogenesis, COX-2, or VEGF-C activity may have an important therapeutic benefit in the control of NSCLC.  相似文献   

14.
<正>Aberrant expression of lysosomal cysteine proteinases(cathepsins)leads to abnormal proteolytic processing of extracellular matrix proteins.This in turn promotes invasion,migration and metastasis of tumor cells(Nomura and Katunuma,2005).Cystatins are natural inhibitors of cathepsins.Therefore,dysregulated expression of cystatins and the consequent alteration in the cathepsin:cystatin ratio are likely to play an important role in malignant progression of tumors.This notion is supported by studies  相似文献   

15.
《遗传学报》2021,48(7):571-581
Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity.Mouse SCLC cells derived from the Rb1~(L/L)/Trp53~(L/L)(RP) autochthonous mouse model grew as adhesion or suspension in cell culture,and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells.Here,we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymallike (Mes) and epithelial-like (Epi) SCLC cells.The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells.Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells.Importantly,inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2(Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays.Moreover,genetic deletion of Tgfbr2 or Smad4,the key components of the TGF-β signaling pathway,dramatically attenuates SCLC metastasis in the RP autochthonous mouse model.Collectively,our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.  相似文献   

16.
He XH  Li JJ  Xie YH  Tang YT  Yao GF  Qin WX  Wan DF  Gu JR 《Cell research》2004,14(6):487-496
CT120, a novel membrane-associated gene implicated in lung carcinogenesis, was previously identified from chromosome 17pl 3.3 locus, a hot mutation spot involved in human malignancies. In the present study, we further determined that CT120 ectopic expression could promote cell proliferation activity of NIH3T3 cells using MTS assay, and monitored the downstream effects of CT120 in NIH3T3 cells with Atlas mouse cDNA expression arrays. Among 588 known genes, 133 genes were found to be upregulated or downregulated by CT120. Two major signaling pathways involved in cell proliferation, cell survival and anti-apoptosis were overexpressed and activated in response to CT120:One is the Raf/MEK/Erk signal cascades and the other is the PI3K/Akt signal cascades, suggesting that CT120 might contribute, at least in part, to the constitutively activation of Erk and Akt in human lung caner cells. In addition, some tumor metastasis associated genes cathepsin B, cathepsin D, cathepsin L, MMP-2/TIMP-2 were also upregulated by CT120, upon which CT120 might be involved in tumor invasiveness and metastasis. In addition, CT120 might play an important role in tumor progression through modulating the expression of some candidate “Lung Tumor Progression”genes including B-Raf, Rab-2, BAX, BAG-1, YB-1, and Cdc42.  相似文献   

17.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.  相似文献   

18.
Type IV collagenase plays an important role in tumor invasion and metastasis through cleaving type IV collagen in the basement membrane and extracellular matrix. In this study a molecule-downsized immunoconjugate (Fab'-LDM) was constructed by linking lidamycin (LDM), a highly potent antitumor antibiotic, to the Fab' fragment of a monoclonal antibody directed against type IV collagenase and its antitumor effect was investigated. As assayed in 10% SDS-PAGE gel, the molecular weight of Fab'-LDM conjugate was 65 kD with a 1 : 1 molecular ratio of Fab' and LDM. The Fab'-LDM conjugate maintained most part of the immunoreactivity of Fab' fragment to both type IV collagense and mouse hepatoma 22 cells by ELISA. By MTT assay, Fab'-LDM conjugate showed more potent cytotoxicity to hepatoma 22 cells than that of LDM. Administered intravenously, Fab'-LDM conjugate proved to be more effective against the growth of subcutaneously transplanted hepatoma 22 in mice than free LDM in two experiment settings. In Experiment  相似文献   

19.
Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a novel chemokine, is hypothesized to be associated with carcinogenesis. VCC-1 is expressed in hepatocellular carcinoma (HCC) cells, but its func- tion remains unknown. To investigate the molecular effects of VCC-1 on HCC cells, the HCC cell line SMMC7721 was stably transfected with the recombinant plasmid pcDNA3.1/VCC-1. Our data demonstrated that overexpression of VCC-1 in SMMC7721 cells significantly enhanced the cellular proliferation, invasive ability, and tumor growth, when compared with both empty vector control cells and parental cells. These results strongly suggest that VCC-1 plays an important role in SMMC7721 invasion and tumor growth, and indicate that VCC-1 may serve as a potential biomarker for anti-HCC therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号