首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TicS5 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-11 and AtPTC52 (Protochlorophyllide-dependent Trans- Iocon Component, 52 kDa; has also been called atTic55-1V). Our phylogenetic analysis shows that attic55-11 is an ortholog of psTic55 from pea (Pisum sativurn), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild- type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-11 mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-11 and AtPTC52 are not strictly required for functional protein import in Arabidopsis.  相似文献   

2.
Brassinosteroids(BRs),a group of plant steroidal hormones,play critical roles in many aspects of plant growth and development.Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones.Arabidopsis somatic embryogenesis receptor-like kinases(SERKs),as co-receptors of BRI1,were found to play a fundamental role in an early activation step of BR signaling pathway.Here we report a novel function of SERKs in regulating Arabidopsis root development.Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway.Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant,the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants.More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport,cell cycle,endodermis development and root meristem differentiation,which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.  相似文献   

3.
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.  相似文献   

4.
Peroxisomes are essential eukaryotic organelles that mediate various metabolic processes. Peroxisome import depends on a group of peroxisome biogenesis factors called peroxins, many of which are evolutionarily conserved. PEX2, PEX10, and PEX12 are three RING-finger-domain-containing integral membrane peroxins crucial for protein import. In yeast (Saccharomyces cerevisae), RING peroxins act as E3 ligases, facilitating the recycling of the peroxisome import receptor protein PEX5 through ubiquitination. In plants, RING peroxins are essential to plant vitality. To elucidate the mode of action of the plant RING peroxins, we employed in vitro assays to show that the Arabidopsis RING peroxins also have E3 ligase activities. We also identified a PEX2-interacting protein, DSK2b, which is a member of the ubiquitin receptor family known to function as shuttle factors ferrying polyubiquitinated substrates to the proteasome for degradation. DSK2b and its tandem duplicate DSK2a are localized in the cytosol and the nucleus, and both interact with the RING domain of PEX2 and PEX12. DSK2 artificial microRNA lines did not display obvious defects in plant growth or peroxisomal processes, indicating functional redundancies among Arabidopsis ubiquitin receptor proteins. Our results suggest that Arabidopsis RING peroxins can function as E3 ligases and act together with the ubiquitin receptor protein DSK2 in the peroxisomal membrane-associated protein degradation system.  相似文献   

5.
The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHY-LENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling.  相似文献   

6.
Mitogen-activated protein kinase (MAPK) pathways regulate signal transduction from different cellular com- partments and from the extracellular environment to the nucleus in all eukaryotes. One of the best-characterized MAPKs in Arabidopsis thaliana is MPK4, which was shown to be a negative regulator of systemic-acquired resistance. The mpk4 mutant accumulates salicylic acid (SA), possesses constitutive expression of pathogenesis-related (PR) genes, and has an extremely dwarf phenotype. We show that suppression of SA and phylloquinone synthesis in chloroplasts by knocking down the IC51 gene (by crossing it with the icsl mutant) in the mpk4 mutant background did not revert mpk4-impaired growth. However, it did cause changes in the photosynthetic apparatus and severely impaired the quantum yield of pho- tosystem Ih Transmission microscopy analysis revealed that the chloroplasts' structure was strongly altered in the mpk4 and mpk4/icsl double mutant. Analysis of reactive oxygen species (ROS)-scavenging enzymes expression showed that suppression of SA and phylloquinone synthesis in the chloroplasts of the mpk4 mutant caused imbalances in ROS homeo- stasis which were more pronounced in mpk4/icsl than in mpk4. Taken together, the presented results strongly suggest that MPK4 is an ROS/hormonal rheostat hub that negatively, in an SA-dependent manner, regulates immune defenses, but at the same time positively regulates photosynthesis, ROS metabolism, and growth. Therefore, we concluded that MPK4 is a complex regulator of chloroplastic retrograde signaling for photosynthesis, growth, and immune defenses in Arabidopsis.  相似文献   

7.
Glyoxylate reductase (GLYR) is a key enzyme in plant metabolism which catalyzes the detoxification of both photorespiratory glyoxylate and succinic semialdehdye, an intermediate of the γ-aminobutyrate (GABA) pathway. Two isoforms of GLYR exist in plants, GLYR1 and GLYR2, and while GLYR2 is known to be localized in plastids, GLYR1 has been reported to be localized in either peroxisomes or the cytosol. Here, we reappraised the intracellular localization of GLYR1 in Arabidopsis thaliana L. Heynh (ecotype Lansberg erecta) using both transiently-transformed suspension cells and stably-transformed plants, in combination with fluorescence microscopy. The results indicate that GLYR1 is localized exclusively to the cytosol regardless of the species, tissue and/or cell type, or exposure of plants to environmental stresses that would increase flux through the GABA pathway. Moreover, the C-terminal tripeptide sequence of GLYR1, -SRE, despite its resemblance to a type 1 peroxisomal targeting signal, is not sufficient for targeting to peroxisomes. Collectively, these results define the cytosol as the intracellular location of GLYR1 and provide not only important insight to the metabolic roles of GLYR1 and the compartmentation of the GABA and photorespiratory pathways in plant cells, but also serve as a useful reference for future studies of proteins proposed to be localized to peroxisomes and/or the cytosol.  相似文献   

8.
9.
Plant fertility defects induced by the enhanced expression of microRNA167   总被引:8,自引:0,他引:8  
Ru P  Xu L  Ma H  Huang H 《Cell research》2006,16(5):457-465
  相似文献   

10.
11.
Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants contained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP~ was detected. Since the CO2 fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants.  相似文献   

12.
13.
Dong H  Deng Y  Mu J  Lu Q  Wang Y  Xu Y  Chu C  Chong K  Lu C  Zuo J 《Cell research》2007,17(5):458-470
Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spcl-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC 1/ZDS were substantially reduced in spc1-1, suggesting that SPC 1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1. 1, Lhcbl. 4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.  相似文献   

14.
15.
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, Pt GH9B5 and At GH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, Pt GH9C2 and At GH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module.The poplar endoglucanases were expressed in Arabidopsis using both a 35 S promoter and the Arabidopsis secondary cell wall-specific Ces A8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAiconstruct was created to downregulate At GH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, micro fibril angle, and proportion of cell wall carbohydrates. Misregulation of Pt GH9B5/At GH9B5 resulted in changes in xylose content, while misregulation of Pt GH9C2/At GH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.  相似文献   

16.
17.
18.
Arabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant fl owers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant. Accordingly, endothecium ligni fication is altered only in abcb1 anthers. Both abcb1 and abcb1 abcb19 stamens also show altered early development, with asynchronous anther locules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcb1 abcb19 anther locules, while only a small percentage of pollen grains are nonviable according to Alexander's staining. In agreement, TAM(TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2(BARELY ANY MERISTEM)—involved in tapetal cell development—are overexpressed in abcb1 abcb19 young fl ower buds. Corre spondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcb1 and abcb1 abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a signi ficant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.  相似文献   

19.
Anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ligase, plays a critical role in cell cycle control, but the functional characterization of each subunit has not yet been completed. To investigate the function of APC1 in Arabidopsis, we analyzed four mutant alleles of APC1, and found that mutation in APC1 resulted in significantly reduced plant fertility, accumulation of cyclin B, and disrupted auxin distribution in embryos. The three mutant alleles apc1-1, apc1-2 and apc1-3 shared variable defects in female gametogenesis including degradation, abnormal nuclear number, and disrupted polarity of nuclei in the embryo sac as well as in embryogenesis, in which embryos were arrested at multiple stages. All of these defects are similar to those previously identified in apc4. The mutant apc1-4, in which the T-DNA was inserted after the transmembrane domain at the C-terminus, showed much more severe phenotypes; that is, most of the ovules were arrested at the one-nucleate female gametophyte stage (stage FG1). In the apc1 apc4 double mutants, the fertility was further reduced by one-third in apc1-1/+ apc4-1/+, and in some cases no ovules even survived in siliques of apc1-4/+ apc4-1/+. Our data thus suggest that APC1, an essential component of APC/C, plays a synergistic role with APC4 both in female gametogenesis and in embryogenesis.  相似文献   

20.
The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transporters in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtlPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that S0133 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryodc cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and transzeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hypersensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of^3Hlabeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation in AtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号