首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为获得甘草细胞在反应器中放大培养的最佳条件,在建立稳定的甘草细胞搅拌式生物反应器放大培养体系的基础上,分别以单因素和正交实验获得的数据为样本,以细胞净增长生物量为考察指标,运用BP神经网络耦合遗传算法对反应器操作策略进行优化。结果表明,接种量6.4%、摇床转速89r/min、通气速率0.1vvm是甘草细胞进行反应器培养的最优条件;与传统的正交实验方法相比,这种基于神经网络耦合遗传算法的优化方法使反应器中细胞生物量的积累提高了6.9%。  相似文献   

2.
内循环气升式生物反应器培养甘草细胞   总被引:1,自引:0,他引:1  
自行设计研制了7L,9L及25L内循环气升式生物反应器,并应用于甘草细胞的放大培养研究。在接种量为8%(W/V)通气率为0.2—0.25vvm的条件下,甘草细胞在反应器中生长迅速。其中在9L反应器中生长最好,最高生物量达16.25g/L,生长速率达0.9g/L.d,均高于摇瓶培养。培养过程中pH值、溶氧状况通过电极自动显示记录,说明设计的气升式生物反应器适合于甘草细胞的大规模培养。  相似文献   

3.
搅拌式生物反应器悬浮培养水母雪莲细胞的研究   总被引:7,自引:0,他引:7  
应用 2L通气搅拌式生物反应器一步批式培养水母雪莲细胞。采用倾斜式搅拌桨代替透平桨 ,研究了搅拌转速、通气量和接种量对细胞生长和黄酮合成的影响 ,发现在 75r min、70 0~1000L min和 4.0~ 5.0gDCW L接种量下细胞生长和黄酮合成比较好。经过 12d培养细胞干重达 13.8gDCW L ,黄酮产量 416mg L ,黄酮含量占细胞干重的 30%。水母雪莲细胞生长及黄酮合成的进程表明 ,黄酮积累与细胞生长呈正相关。对细胞聚集体分布的研究发现 ,流变压力使细胞聚集体分裂 ,使反应器中细胞生长受到影响 ,黄酮产量较摇瓶中降低  相似文献   

4.
搅拌式生物反应器中造血细胞的灌注培养   总被引:4,自引:0,他引:4  
为了消除造血细胞静态培养中存在的浓度梯度和搅拌悬浮培养时换液引起的波动,为造血细胞体外扩增提供更理想的培养环境和操作方式,利用自主开发的造血细胞重力沉降截留系统结合有溶氧和pH控制的生物反应器进行了脐血造血细胞的灌注培养。两次灌注培养中总细胞分别扩增11.5和18.6倍,扩增倍数最大时,CFU-Mix分别扩增23.2倍和20.4倍、 CFU-GM扩增13.9倍和21.5倍、BFU-E 扩增8.0倍和6.9倍、CD34+细胞扩增17.1倍和15.4倍。培养到12d时,第一次实验由267×106单个核细胞扩增得到1082×106个总细胞,6.31×106个CFU-GM,6.2×106个CFU-Mix和23×106个CD34+细胞;第二次实验由180×106单个核细胞扩增得到1.080×106个总细胞,4.65×106个CFU-GM,11.0×106个CFU-Mix和25.0×106个CD34+细胞,这达到了临床规模,由于控制了较低的溶氧和稳定的培养环境,细胞中干/祖细胞含量显著高于方瓶。但灌注培养到后期细胞密度达到较高后,细胞生长受到抑制,这应该是由细胞密度过高本身所引起。搅拌式反应器中进行灌注培养有利于造血干/祖细胞的进一步扩增,培养得到的细胞中干/祖细胞含量较高,培养规模达到了临床要求,但过高的细胞密度将对造血细胞的生长产生抑制。  相似文献   

5.
VERO细胞生物反应器放大培养初探   总被引:1,自引:0,他引:1  
目的:研究用生物反应器放大进行Vero细胞微载体培养,实现生物反应器之间Veto细胞放大培养.方法:5L微载体生物反应器以10g/L微载体浓度培养Vero细胞,96h时经漂洗、消化、接种于30L微载体生物反应器,实现放大后的30L微载体生物反应器细胞怏速增殖,期间对不同时期的微载体细胞进行细胞计数、细胞代谢分析和形态观察.结果:5L生物反应器细胞经过96h灌注培养,平均细胞密度达到7.81×10~6cells/mL.5L微载体细胞放大到30L微载体生物反应器,平均细胞收获率为32.3%;放大到30L生物反应器后经过144h培养,细胞密度达到9.19×10~6cells/mL;放大后的细胞代谢途径依然以葡萄糖氧化代谢乳酸为主.结论:生物反应器由5L到30L进行Veto细胞放大培养是可行的.  相似文献   

6.
10升气升环流式生物反应器培养紫草细胞   总被引:5,自引:0,他引:5  
本文采用自行设计研制的10升气升环流式生物反应器培养紫草细胞,培养周期34d.前14d为细胞生长培养,细胞生长呈正常的S型曲线,细胞增长到原细胞接人量的4倍.后20d为紫草色素生产培养,细胞增长到32倍。整个周期每升培养液可生产紫草色素0.6g,在反应器中,培养液pH值的变化与细胞生长呈正相关,与紫草色素的形成呈负相关,pH值变化规律可用于监测紫草细胞在生物反应器的生长和色素形成.  相似文献   

7.
用国产生物反应器大规模高密度培养Vero细胞   总被引:3,自引:3,他引:3  
  相似文献   

8.
藏红花细胞悬浮培养体系的建立及优化   总被引:3,自引:1,他引:3  
基于诱导的藏红花细胞系,通过摇瓶法,优化了其液体培养基、接种量和种龄等培养条件,以建立藏红花细胞悬浮培养体系。结果表明,将生长在固体培养基上的藏红花愈伤组织接种在MS液体培养基(添加了2mg/L2,4-D,1mg/L6-BA和300mg/LCH)中,于(22±0.3)℃,120r/min的摇床上,暗培养30d,便可获得藏红花的悬浮细胞系。经优化其培养基、接种量和种龄,将种龄为20d的细胞系,按照5%接种量接种在液体B5培养基(添加了2mg/LNAA,1mg/L6-BA和300mg/LCH)中,于(22±0.3)℃,120r/min的摇床上,培养36d,细胞生物量(13.4g/L)和藏红花素产量(0.91g/L)均达到最高。本研究建立的藏红花细胞悬浮培养体系为其生物反应器放大培养奠定了基础。  相似文献   

9.
本文介绍了植物细胞培养的特点及其生物反应器的设计原理,概述了植物细胞悬浮培养和固定化细胞系统中各类生物反应器的传氧、混合和流体力学特性与植物细胞生长和次生代谢物生产的关系。  相似文献   

10.
转瓶培养与生物反应器微载体培养乙脑病毒的比较   总被引:1,自引:0,他引:1  
分别用15L转瓶与15L生物反应器微载体(2.5g/L CytodexⅢ)系统培养Vero细胞并接种乙型脑炎病毒(简称乙脑病毒)。转瓶培养Vero细胞7~8d,细胞数最高能达到8×108;当单层细胞长至3.0~4.5×108时接种乙脑病毒,病毒滴度能达到6.5~6.98 lg PFU/ml,并能够连续收获4~5次;采用微载体系统培养Vero细胞,细胞密度最高能达到170×108;当单层细胞长至60~70×108时接种乙脑病毒,病毒滴度能达到7~7.5 lg PFU/ml,并能够连续收获13~15次。两种方式培养的乙脑病毒收获液分别经灭活、浓缩、柱层析纯化后制备Vero细胞乙脑纯化疫苗,各项检定指标均符合《中国药典》的相关要求。  相似文献   

11.
本文考察了在2.5LcelliGen细胞培养器和国产20LcellCul-20细胞培养生物反应器中采用微载体技术培养细胞的情况。分析了用cellcul-20细胞培养生物反应器进行大规模培养时细胞的生长、代谢规律,研究了从2.5L扩大到20L规模的细胞转移条件。采用微载体球间直接转移技术。提高了接种效率,减少了接种步骤和污染机会。当国产GT一25微载体用量为5g/L,采用连续灌注工艺培养vero细胞,在国产20L cellCul—20细胞培养生物反应器中,连续培养5天,细胞数增加7倍,细胞密度超过1.0×107 cells/m】。本文开发的细胞培养工艺,对于中试及工业规模的动物细胞大量培养具有一定的指导意义。  相似文献   

12.
胀果甘草悬浮培养细胞合成甘草总黄酮   总被引:1,自引:0,他引:1  
比较了胀果甘草(Glycyrrhiza inflata)悬浮细胞在逐级放大摇瓶中的生长、黄酮产量以及营养消耗过程,以便了解其放大规律。结果表明,在250和500mL摇瓶中,细胞的最大生物量、黄酮产量以及最大比生长速率没有显著性差异,但是在1L的摇瓶中,这三种参数都显著地降低,分别比250mL摇瓶中降低了27%,30%和27%。在逐级放大的摇瓶中,氮、磷、铵浓度都随着培养时间延长而逐渐降低,尽管在1L的摇瓶中磷消耗得最慢,但三种摇瓶中磷在细胞生长对数期基本都被消耗尽了。此外,硝态氮在第18天时基本被消耗完,而铵态氮在细胞收获时仍能维持在100mg/L。因此在反应器中培养时,主要的培养条件还需进一步优化。  相似文献   

13.
搅拌生物反应器中杂交瘤细胞生长与破损的初步研究   总被引:1,自引:0,他引:1  
采用连续悬浮培养技术,在3种培养基组成下实验考察了生物反应器中机械搅拌强度和气泡对细胞生长和破损或伤害的作用,发现杂交瘤细胞在无血清培养基中培养时,120r/min的机械搅拌强度对细胞产生了生理伤害作用,而造成细胞破损的主要是气泡。血清和PluronicF68对细胞均有保护作用,它们的存在能保护细胞免受流体剪切的生理伤害作用,适应更高的机械搅拌强度,PluronicF68能有效地防止气泡对细胞的破损作用。另外,对它的保护作用机理也作了讨论。  相似文献   

14.
本文对植物细胞培养中使用的搅拌式生物反应器,气升式生物反应器,固定化细胞生物反应器,光照培养生物反应器和其它新型生物反应器装置进行了全面的评述。  相似文献   

15.
干细胞是一类具有自我更新能力和多向分化潜能的细胞,在再生医学、药物筛选及毒理学等生物医学领域呈现出诱人的前景。通过目前的干细胞分离培养技术可获得的干细胞数量极少,远远不能满足临床需要,因此体外大规模扩增培养干细胞是亟待解决的问题。该文简述了适用于干细胞培养的各种生物反应器的特点,以及悬浮生物反应器体系在不同类型干细胞群中的研究应用。同时对利用生物反应器培养干细胞过程中几个主要的关键参数进行了阐述,将为干细胞的培养和研究从思路和方法上提供参考。  相似文献   

16.
自然环境中99%微生物在实验室条件下仍是不能被培养的,称之为"未培养"微生物或微生物"暗物质"。对其进行研究不仅有助于认识环境中微生物代谢多样性,丰富生命之树,同时未培养微生物还蕴含着巨大的新基因和新天然产物资源。但传统培养技术的局限性阻碍了"未培养"微生物资源的开发和利用。虽然随着分子生物学技术的发展,可以直接从环境中获得未培养微生物的遗传信息,分析微生物的广泛代谢多样性,但微生物的生理特征和代谢产物等分析仍然需要建立在研究纯菌株的基础上。目前,已经有很多新颖的培养技术被研发,如原位培养技术、共培养技术和连续流生物反应器培养技术等用于挖掘未培养微生物资源。本文主要介绍了连续流生物反应器培养新技术的发展与改进,探讨了"未培养"微生物培养技术及设备的发展方向,以进一步促进"未培养"微生物资源的开发与利用。  相似文献   

17.
固定化细胞生物反应器的应用及研究进展   总被引:2,自引:0,他引:2  
综述了固定化细胞生物反应器的应用及其在优化设计、传质、传热等方面的研究进展 ,可为优化设计反应器及自动化大生产提供一定的参考。  相似文献   

18.
植物细胞大规模培养生物反应器研制概况   总被引:12,自引:0,他引:12  
本文对植物细胞培养中使用的搅拌式生物反应器,气升式生物反应器,固定化细胞生物反应器,光照培养生物反应器和其它新型生物反应器装置进行了全面的评述。  相似文献   

19.
目的 应用旋转生物反应器(RCCS)和微载体培养体系尝试建立一种实现批量培养干细胞的新方法.方法 应用RCCS和微载体培养体系对小鼠胚胎干细胞(mESCs)进行体外培养扩增,定期收集细胞样品,镜下观察mESCs在RCCS生长的形态特征,并定量绘制细胞生长曲线,利用MATLAB软件计算细胞生长参数并对照平面培养体系,利用H&E染色、免疫荧光及RT-PCR技术对RCCS内培养的mESCs的细胞形态,未分化标志蛋白(SSEA-1)和标志基因(oct-4)的表达进行定性或半定量分析.结果 mESCs可在RCCS内以贴附于微载体表面的形式实现三维生长,其生长增殖状态良好,且伴随培养时间的延长,SSEA-1蛋白及oct-4 基因的表达水平逐渐降低.这表明RCCS内培养扩增的mESCs逐渐走向分化,该分化进程同步于平面对照培养体系.结论 RCCS可以为mESCs的体外规模化扩增培养提供良好的培养体系.  相似文献   

20.
微藻具有固定CO2和净化有机废水的能力,在环保、食品饲(饵)料、医药和生物能源开发等领域备受关注,但规模化培养及其产业化仍是研究的难点,亟待解决。就常用于大规模培养微藻的光生物反应器的特点和结构进行了综述。其中,封闭式微藻光生物反应器能够较好地调控藻种的培养条件、不易遭受污染,藻种的纯度容易控制,但培养规模小,生产成本较高;而开放式微藻光生物反应器无法精确控制藻种生长环境,但生产规模大、产量高、生产成本低,因此应用广泛。最佳的方法是综合两者优点,即首先利用封闭式微藻光生物反应器进行中试放大,大量繁殖藻种,然后投入开放式微藻光生物反应器内进行大规模商业生产,此方法有望成为微藻光生物反应器的发展方向,以期为微藻大规模培养提供参考借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号