首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and nuclear-encoded proteins. During the past few years, extensive proteomic and genetic research on the higher plant NDH complex has been carried out, resulting in identification of several novel nuclear-encoded subunits. In addition, a number of auxiliary proteins, which mainly regulate the expression of chloroplast-encoded ndh genes as well as the assembly and stabilization of the NDH complex, have been discovered and characterized. In the absence of detailed crystallographic data, the structure of the NDH complex has remained obscure, and therefore the role of several NDH-associated nuclear-encoded proteins either as auxiliary proteins or structural subunits remains uncertain. In this review, we summarize the current knowledge on the subunit composition and assembly process of the chloroplast NDH complex. In addition, a novel oligomeric structure of NDH, the PSI/NDH supercomplex, is discussed.  相似文献   

2.
3.
目的:对比研究三种人工栽培大黄的泻下作用。方法:本研究采用KM小鼠96只,雌雄各半,按性别体重分层随机分为8组(n=12)。采用复方地芬诺酯复制便秘动物模型,通过药物干预,对比观察甘南栽培唐古特大黄与西宁栽培唐古特大黄、礼县栽培掌叶大黄的泻下作用。结果:2.0~6.0g/ks剂量范围内的甘南栽培唐古特大黄、西宁栽培唐古特大黄及礼县栽培掌叶大黄可明显缩短便秘小鼠的排便时间,增加排便次数,提高大肠含水量,抑制结肠NO+K+-ATP酶的活性;甘南栽培唐古特大黄的上述作用明显强于礼县栽培掌叶大黄,而甘南栽培唐古特大黄与西宁栽培唐古特大黄的上述作用未见明显差异。结论:甘南栽培唐古特大黄具有明显的泻下作用,甘南栽培唐古特大黄与西宁栽培唐古特大黄的泻下作用无明显差异;抑制结肠NO+K+-ATP酶的活性是甘南栽培唐古特大黄泻下机制之一。  相似文献   

4.
Non-mycorrhizal Brassica does not produce specialized root structures such as cluster or dauciform roots but is an effective user of P compared with other crops. In addition to P-uptake, utilization and remobilization activity, acquisition of orthophosphate (Pi) from extracellular sparingly P-sources or unavailable bound P-forms can be enhanced by biochemical rescue mechanisms such copious H+-efflux and/or carboxylates exudation into rhizosphere by roots via plasmalemma H+ ATPase and anion channels triggered by P-starvation. To visualize the dissolution of sparingly soluble Ca-phosphate (Ca-P), newly formed Ca-P was suspended in agar containing other essential nutrients. With NH4+ applied as the N source, the precipitate dissolved in the root vicinity can be ascribed to rhizosphere acidification, whereas no dissolution occurred with nitrate nutrition. To observe in situ rhizospheric pH changes, images were recorded after embedding the roots in agar containing bromocresol purple as a pH indicator. P-tolerant cultivar showed a greater decrease in pH than the sensitive cultivar in the culture media (the appearance of typical patterns of various colors of pH indicator in the root vicinity), and at stress P-level this acidification was more prominent. In experiment 2, low P-tolerant class-I cultivars (Oscar and Con-II) showed a greater decrease in solution media pH than low P-sensitive class-II (Gold Rush and RL-18) cultivars, and P-contents of the cultivars was inversely related to decrease in culture media pH. To elucidate P-stress- induced remodeling and redesigning in a root architectural system, cultivars were grown in rhizoboxes in experiment 3. The elongation rates of primary roots increased as P-supply increased, but the elongation rates of the branched zones of primary roots decreased. The length of the lateral roots and topological index values increased when cultivars were exposed to a P-stress environment. To elucidate Pi-uptake kinetics, parameters related to P influx: maximal  相似文献   

5.
A set of trisomics of Chinese cabbage was used for determining the n-I-1 gamete transmission rate and locating the gene controlling 2n gamete formation on the corresponding chromosome. The results showed that the transmission rates of extra chromosomes in different trisomics varied from 0% to 15.38% by male gametes and from 0% to 17.39% by female gametes. Of the nine F2 populations derived from the hybridizations between each trisomic and Bp058 (2n gamete material), only Tri- 4xBp058 showed that the segregation ratio of plants without 2n gamete formation to plants with 2n gamete formation was 10.38:1, which fitted the expected segregation ratio of the trisomics (AAa) based on the 7.37% of n+l gamete transmission through female and 5.88% through male. In other populations the segregation ratios varied from 2.48:1 to 3.72:1, which fitted the expected 3:1 segregation ratio of the bisomics (Aa). These results suggested that the gene controlling 2n gamete formation in Chinese cabbage Bp058 was located on chromosome 4. Further trisomic analysis based on the chromosome segregation and the incomplete stochastic chromatid segregation indicated that the gene locus was tightly linked to the centromere.  相似文献   

6.
The complete nucleotide sequence of the mitochondrial genome (mitogenome) of Geisha distinctissima (Hemiptera: Flatidae) has been determined in this study. The genome is a circular molecule of 15,971 bp with a total A+T content of 75.1%. The gene content, order, and structure are consistent with the Drosophila yakuba genome structure and the hypothesized ancestral arthro- pod genome arrangement. All 13 protein-coding genes are observed to have a putative, inframe ATR methionine or ATT isoleucine codons as start signals. Canonical TAA and TAG termination codons are found in nine protein-coding genes, and the remaining four (cox1, atp6, cox3, and nad4) have incomplete termination codons. The anticodons of all transfer RNA (tRNAs) are identical to those observed in D. yakuba and Philaenus spumarius, and can be folded in the form of a typical clover-leaf structure except for tRNASer(AGN). The major non-coding region (the A + T-rich region or putative control region) between the small ribosomal subunit and the tRNAne gene includes two sets of repeat regions. The first repeat region consists of a direct 152-bp repetitive unit located near the srRNA gene end, and the second repeat region is composed of a direct repeat unit of 19 bp located toward tRNAIle gene. Comparisons of gene variability across the order suggest that the gene content and arrangement of G. distinctissima mitogenome are similar to other hemipteran insects.  相似文献   

7.
8.
Plant respiration is characterized by two pathways for electron transfer to O2, namely the cytochrome pathway (CP) that is linked to ATP production, and the alternative pathway (AP), where electrons from ubiquinol are directly transferred to O2 via an alternative oxidase (AOX) without concomitant ATP production. This latter pathway is well suited to dispose of excess electrons in the light, leading to optimized photosynthetic performance. We have characterized T- DNA-insertion mutant lines of Arabidopsis thaliana that do not express the major isoform, AOXIA. In standard growth conditions, these plants did not show any phenotype, but restriction of electron flow through CP by antimycin A, which induces AOXIA expression in the wild-type, led to an increased expression of AOXID in leaves of the aoxla-knockout mutant. Despite the increased presence of the AOX1D isoform in the mutant, antimycin A caused inhibition of photosyn- thesis, increased ROS, and ultimately resulted in amplified membrane leakage and necrosis when compared to the wild- type, which was only marginally affected by the inhibitor. It thus appears that AOX1 D was unable to fully compensate for the loss of AOXIA when electron flow via the CP is restricted. A combination of inhibition studies, coupled to metabolite profiling and targeted expression analysis of the P-protein of glycine decarboxylase complex (GDC), suggests that the aoxla mutants attempt to increase their capacity for photorespiration. However, given their deficiency, it is intriguing that increase in expression neither of AOX1D nor of GDC could fully compensate for the lack of AOXIA to optimize pho- tosynthesis when treated with antimycin A. We suggest that the aoxla mutants can further be used to substantiate the current models concerning the influence of mitochondrial redox on photosynthetic performance and gene expression.  相似文献   

9.
Katanin, a microtubule-severing enzyme, consists of two subunits:the catalytic subunit P60, and the regulatory subunit P80. In several species, P80 functions in meiotic spindle organization, the flagella biogenesis, the neuronal development, and the male gamete production. However, the P80 function in higher plants remains elusive. In this study, we found that there are three katanin P80 orthologs (OsKTN80a, OsKTN80b, and OsKTN80c) in Oryza sativa L. Overexpression of OsKTN80a caused the retarded root growth of rice seedlings. Further investigation indicates that the retained root growth was caused by the repressed cell elongation in the elongation zone and the stalled cytokinesis in the division zone in the root tip. The in vivo examination suggests that OsKTN80a acts as a microtubule stabilizer. We prove that OsKTN80a, possibly associated with OsKTN60, is involved in root growth via regulating the cell elongation and division.  相似文献   

10.
D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xyiose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg^2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.  相似文献   

11.
Impacts of salinity become severe when the soil is deficient in oxygen. OxygaUon (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na^+ and CI^- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na^+ or CI^- concentration. Oxygation invariably increased, whereas salinity reduced the K^+: Na^+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

12.
The earliest land plants faced a suite of abiotic stresses largely unknown to their aquatic algal ancestors. The descendants of these plants evolved two general mechanisms for survival in the relatively arid aerial environment. While the vascular plants or 'tracheophytes' developed tissue specializations to transport and retain water, the other main lineages of land plants, the bryophytes, retained a simple, nonvascular morphology. The bryophytes--mosses, hornworts, and liverworts--continually undergo a co-equilibration of their water content with the surrounding environment and rely to a great extent on intrinsic cellular mechanisms to mitigate damage due to water stress. This short review will focus on the cellular and molecular responses to dehydration and rehydration in mosses, and offer insights into general plant responses to water stress.  相似文献   

13.
The baculovirus P 10 protein has always represented a mystery in the field of insect virology. Like the baculovirus polyhedrin protein it is expressed at high levels very late in infection. Homologues of the Autographa californica nucleopolyhedrovirus p10 gene are conserved in all Alphabaculoviruses and in other viruses of lepidopteran hosts yet is completely dispensable for virus replication and transmission. PIO is a microtubule interacting protein whose expression has been associated with the formation of a variety of complex and extensive cytoplasmic and nuclear structures. PIO has been associated with a number of roles during infection ranging from the formation of virus occlusion bodies, to affecting the rate of cellular and/or nuclear lysis during the final stages of the virus replication cycle. In this article we review recent work aimed at understanding the role of this enigmatic protein, putting them into context with recent advances in understanding of protein structure and function. We look back at a number of historical studies and observations, reanalysing their conclusions based on recent data and our own observations. The role of the P 10 protein during baculovirus replication remains elusive, however, novel avenues of investigation have been identified that will, we are sure, eventually lead to an understanding of this protein.  相似文献   

14.
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 (gnl2-1) and gn12-2 in Arabidopsis thaliana, in which the pollen grains failed to germinate in vitro and in vivo. GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination.  相似文献   

15.
Thellungiella salsuginea (halophila) is a close relative of Arabidopsis thaliana but, unlike A. thaliana, it grows well in extreme conditions of cold, salt, and drought as well as nitrogen limitation. Over the last decade, many laboratories have started to use Thellungiella to investigate the physiological, metabolic, and molecular mechanisms of abiotic stress tolerance in plants, and new knowledge has been gained in particular with respect to ion transport and gene expression. The advantage of Thellungiella over other extremophile model plants is that it can be directly compared with Arabidopsis, and therefore generate information on both essential and critical components of stress tolerance. Thellungiella research is supported by a growing body of technical resources comprising physiological and molecular protocols, ecotype collections, expressed sequence tags, cDNA-libraries, microarrays, and a pending genome sequence. This review summarizes the current state of knowledge on Thellungiella and re-evaluates its usefulness as a model for research into plant stress tolerance.  相似文献   

16.
17.
18.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

19.
Malignant gliomas represent the majority of primary brain tumors. The current standard treatments for malignant gliomas include surgical resection, radiation therapy, and chemotherapy. Radiotherapy, a standard adjuvant therapy, confers some survival advantages, but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment. The mechanisms underlying glioma cell radioresistance have remained elusive. Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. Also, autophagy is a novel response of glioma cells to ionizing radiation. Autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate a cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. The regulatory pathways of autophagy share several molecules. PI3K/Akt/mTOR, DNA-PK, tumor suppressor genes, mitochondrial damage, and lysosome may play important roles in radiation-induced autophagy in glioma cells. Recently, a highly tumorigenic glioma tumor subpopulation, termed cancer stem cell or tumor-initiating cell, has been shown to promote therapeutic resistance. This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.  相似文献   

20.
Jatropha curcas is an important economic plant for biodiesel, which is extracted mainly from the endosperm of its mature seeds. Despite the morphological and functional differences between the embryo and endosperm, proteomic characteristics of the two tissues are not yet known. Similar proteomic profiles were observed in the two-dimensional gel electrophoresis maps from the two tissues. There were 380 and 533 major protein spots in the embryo and endosperm, respectively. Fourteen identical spots, showing a notable change, were selected and identified by tandem mass spectrometry. Among these proteins, dihydrolipoamide acetyltransferase (spot 27) participates in tricarboxylic acid cycle, which is an amphibolic pathway. The two parts both included proteins related to stress (spots 8, 115, 118, 125, 130) and signal transduction (spots 7, 100, 108). According to the volume percentage of proteins in embryo and endosperm, the proteins in endosperm (spots 54, 61, 73) were catabolism-related enzymes and reserves to provide the nutrition for seed germination; the proteins in embryo (spots 27, 62, 122) were inclined to anabolism and utilized the nutrition from the endosperm to generate a new life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号