首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bacteriostatic quinone 6-amino-7-chloro-5,8-dioxoquinoline inhibits leucyl-tRNA synthetase in vivo and in vitro (Ogilvie et al. Biochim. Biophys. Acta 407, 357–364; 1975). In this report it is shown that the quinone also interferes with the metabolism of ppGpp. Quinone treatment of E. coli MRE 600 causes the same phenotypic pattern as found in spoT? mutants: overproduction of ppGpp and a drastic increase of its half-life; the formation of pppGpp, the possible degradation product of ppGpp, is blocked. A model is discussed to explain how the inhibition of leucyl-tRNA synthetase could account for the altered metabolism of ppGpp.  相似文献   

2.
When Escherichia coli MRE 600 or Bacillus subtilis W 23 are grown in glucose-salt medium supplemented with purines, thymidine and glycine, trimethoprim stops the synthesis of protein by causing a specific lack of methionyl-tRNA. The synthesis of RNA is simultaneously restricted by the stringent control mechanism. Guanosine tetraphosphate (ppGpp) largely accumulates. The addition of methionine abolishes the level of ppGpp and relieves the inhibition of RNA synthesis. The aminoacylation of methionine-specific tRNAs was found to be completely restored. The methionyl-tRNAfMet however does not become formylated. These results indicate that unformylated initiator tRNA is not a sufficient condition for the accumulation of ppGpp and the onset of stringent control.  相似文献   

3.
4.
When EscherichiacoliCP78(rel+) growing on glucose was starved for isoleucine by the addition of valine, the intracellular levels of fructose 6-phosphate, fructose 1,6-bisphosphate and dihydroxyacetone phosphate were abruptly decreased to one-half, but those of glucose 6-phosphate and ATP remained constant. In contrast, this was not the case with CP79(rel?). Chloramphenicol released the response observed in CP78. These results suggest that the glycolytic activity is also under the stringent control. Since only glucosephosphate isomerase[EC 5.3.1.9] was significantly inhibited by guanosine 5′-diphosphate 3′-diphosphate among several glycolytic enzymes tested, the enzyme might be responsible for the decrease observed in CP78.  相似文献   

5.
Polyphosphate anions increase the activity of bovine spleen cathepsin D   总被引:2,自引:0,他引:2  
Bovine spleen cathepsin D is activated by polyphosphate anions when bovine serum albumin is used as substrate at pH 4.6. In the presence of ATP at 10 mM, the catheptic activity at this pH is enhanced as high as 17 times over the control. Similar activating effects were observed, though to varying degrees, with sodium tripolyphosphate, nucleotides, nucleotide analogues, CoA, polyU and yeast RNA. The possible mechanism and biological significance of the activation were discussed with regard to the intralysosomal polyanionic substance.  相似文献   

6.
Evidence for two distinct pyruvate kinase genes in Escherichia coli K-12   总被引:5,自引:0,他引:5  
A strain of Escherichia coli K-12 defective in pyruvate kinase F has been produced. The existence of this mutant, in conjunction with earlier results, strongly suggests that the two pyruvate kinases in this bacterium are distinct forms and not interconvertible. Either form of pyruvate kinase appeared to be equally effective in the glycolytic conversion of phosphoenolpyruvate to pyruvate. Genes specifying pyruvate kinase A and pyruvate kinase F were present on the small F-prime F506 and the locus for pyruvate kinase F was found to be at minute 36.5 on the E. coli genetic map.  相似文献   

7.
8.
Rabbit skeletal muscle protein kinase catalyzes the phosphorylation of DNA-dependent RNA polymerase of Escherichia coli in the presence of adenosine 3′,5′-monophosphate and ATP. The phosphorylation occurs on one (or more) serine residue(s) in the σ-factor under reaction conditions similar to those employed for RNA synthesis. The phosphorylation of RNA polymerase and its stimulation by protein kinase are inhibited by a specific heat-stable inhibitor from rabbit skeletal muscle. With conditions more favorable for the protein kinase reaction, phosphorylation of RNA polymerase also occurs on the β subunit of the core enzyme, but this reaction occurs at a much slower rate than the phosphorylation of the σ-factor.  相似文献   

9.
The rpoZ gene for the omega subunit of Escherichia coli RNA polymerase constitutes single operon with the spoT gene, which is responsible for the maintenance of stringent response under nutrient starvation conditions. To identify the physiological role of the omega subunit, we compared the gene expression profile of wild-type Escherichia coli with that of an rpoZ deleted strain by microarray analysis using an E. coli DNA chip. Here we report on a set of genes which show changes in expression profile following the removal of rpoZ. We have seen that relA, which is responsible for the synthesis of the stringent factor ppGpp and many ribosomal proteins, exhibited noticeable changes in mRNA levels and were therefore further analyzed for their expression using a GFP/RFP two-fluorescent protein promoter assay vector. In the absence of rpoZ, the promoter for the relA gene was severely impaired, but the promoters from the ribosomal protein genes were not affected as much. Taking these results together we propose that the omega subunit is involved in regulation of the relA gene, but induction of the stringently controlled genes in the absence of rpoZ is, at least in part, attributable to a decrease in ppGpp level.  相似文献   

10.
Rat liver cytosol binds 3H-cAMP and 3H-DBcAMP in vitro. Fractionation of bound radioactivity by DEAE-Sephadex chromatography shows that 3H-cAMP is associated with a different cytosolic protein than is 3H-DBcAMP. The pI's of the cAMP-protein and the 3H-DBcAMP-protein complexes are 6.7 and 3.9, respectively. Competition studies between 3H-cAMP and its structural analogues have shown the following order of effectiveness in competing for binding sites in rat liver cytosol: cAMP > N6-MBcAMP > O2′-MBcAMP. No inhibition of 3H-cAMP binding was observed with 5′-AMP, adenosine, cGMP or DBcAMP. In vitro binding experiments with rat serum has shown that only 3H-DBcAMP binds to any significant extent.  相似文献   

11.
The ompF gene codes for a major outer membrane protein whose expression is positively regulated by the ompR and envZ genes. Two sets of promoter deletions, upstream deletions and downstream deletions, were generated in vitro, and the promoter function was studied by connecting them with the tet genes. One of the hybrid genes thus constructed had a functioning ompF-tet hybrid promoter. The 107 base-pair fragment was found to be functioning as the ompF promoter, 90 nucleotides upstream and 17 nucleotides downstream of the mRNA start site that was also determined in this study. The start site was preceded by a convenient Pribnow box. Although the sequence at the -35 region had a low degree of homology to the consensus sequence, analyses of the hybrid promoter suggested that this region is involved in the promoter function in relation to the Pribnow box. They also indicated that the domain responsible for regulation by the ompR gene is located within the -35 region and its upstream region.  相似文献   

12.
13.
14.
15.
ATP-dependent activation and deactivation of retinal rod outer segment phosphodiesterase is affected by calcium [Kawamura, S. and Bownds, M. D., J. Gen. Physiol. 77:571-591(1981)]. Our data demonstrate that although calmodulin has been found in rod outer segments [Liu, Y. P. and Schwartz, H., Biochim. Biophys. Acta 526:186-193(1978); Kohnken, R. E. et al, J. Biol. Chem. 256:12517-12522(1981)], this protein is not involved in calcium-dependent phosphodiesterase activation at light levels at which calcium clearly affects this enzyme's activity. Furthermore, calmodulin does not mediate the calcium-dependent deactivation of phosphodiesterase.  相似文献   

16.
17.
A systematic and comprehensive gene-disrupted mutant collection of E. coli K-12 was used to identify genes whose deletions affect glycogen accumulation. Of the 3985 non-essential gene mutants of the collection, 35 displayed a glycogen-excess phenotype, whereas 30 displayed either glycogen-less or glycogen-deficient phenotypes. The genes whose deletions affect glycogen accumulation were classified into various functional categories, including energy production, envelope composition and integrity, protein translation and stability, transport of inorganic ions and nucleotides, and metabolism of carbohydrates and amino acids. The overall data indicate that glycogen metabolism is highly interconnected with a wide variety of cellular processes in E. coli.  相似文献   

18.
High-affinity calcium-binding proteins in Escherichia coli   总被引:4,自引:0,他引:4  
Crude extracts of Escherichia coli contain at least three heat stable proteins of Mr, 33,000, 47,000, and 60,000, which bind 45Ca2+ in buffers containing micromolar calcium and physiological salt concentrations. Fractions containing these proteins neither activated the calmodulin-dependent enzyme, NAD kinase, nor inhibited the activity of this enzyme in the presence of brain calmodulin. Radioimmunoassay of crude extracts for calmodulin indicated the presence of a calmodulin-like antigen. Crude extracts also contain proteins that interact with 2-trifluoromethyl-10H-(3'-aminopropyl)phenothiazine-Sepharose in a calcium-dependent manner, but proteins eluted from this resin did not bind calcium with high affinity.  相似文献   

19.
The effects on platelet aggregation of α,β-methylene-adenosine-5′-diphosphate (Ado-PCP) have been investigated. Using human citrated platelet-rich plasma it has been shown that: (i) at concentrations of 10?3 M or higher Ado-PCP is able to induce platelet aggregation; (ii) the rate of Ado-PCP-induced aggregation increases on raising the pH of platelet-rich plasma above the pKa for the secondary phosphonyl dissociation of Ado-PCP; (iii) at concentrations from 1 · 10?4 to 5 · 10?4 M Ado-PCP does not cause platelet aggregation itself, but it inhibits ADP-induced aggregation. This inhibition is also observed in washed platelet suspensions. The data suggest that Ado-PCP acts at the same site on the platelet membrane as does ADP and that ADP to AMP transformation is not a prerequisite for the process of aggregation. The observed effect of pH on the rate of Ado-PCP induced aggregation suggests that the ionization state of a nucleotide terminal acid group is important in the process of aggregation.  相似文献   

20.
Bremer H  Dennis P 《Biochimie》2008,90(3):493-499
We have previously proposed that the rate of ribosome function during balanced growth in E. coli, expressed as the rate of peptide chain elongation, is adjusted by a feedback mechanism: whenever that rate is submaximal (i.e. below 22 amino acid residues polymerized per active ribosome at 37 degrees C), the feedback signal ppGpp is generated by an activation of the ppGpp synthetase expressed from the spoT gene. The accumulation of ppGpp reduces the synthesis of additional ribosomes and thereby reduces the consumption of amino acids which, in turn, allows the remaining ribosomes to function at a higher rate. Here we have described with supporting evidence the proposed feedback loop in greater detail and provided a mathematical analysis which predicts that the SpoT ppGpp synthetase activity should be highest when the ribosomes function at their half-maximal rate. This prediction is consistent with reported observations and is independent of the particular (unknown) mechanism by which the rate of translation controls the ppGpp synthetase activity of SpoT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号