首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr26 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, Ile, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr26 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.  相似文献   

2.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

3.
It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.  相似文献   

4.
The mannose 6-phosphate/insulin-like growth factor-II (Man-6-P/IGF-II) receptor is known to cycle between the Golgi, endosomes, and the plasma membrane. In the Golgi the receptor binds newly synthesized lysosomal enzymes and transports them directly to an endosomal (prelysosomal) compartment without traversing the plasma membrane. Deletion of the carboxyl-terminal Leu-Leu-His-Val residues of the 163 amino acid cytoplasmic tail of the bovine Man-6-P/IGF-II receptor partially impaired this function, resulting in the diversion of a portion of the receptor-ligand complexes to the cell surface, where they were endocytosed. The same phenotype was observed when 134 residues of the cytoplasmic tail were deleted from the carboxyl terminus. Disruption of the Tyr24-Lys-Tyr-Ser-Lys-Val29 plasma membrane internalization signal alone had little effect on Golgi sorting, but when combined with either deletion resulted in a complete loss of this function. The mutant receptors retained the ability to recycle to the Golgi and bind cathepsin D. These results indicate that the cytoplasmic tail of the Man-6-P/IGF-II receptor contains two signals that contribute to Golgi sorting, presumably by interacting with the Golgi clathrin-coated pit adaptor proteins. The Leu-Leu-containing sequence represents a novel motif for mediating interaction with Golgi adaptor proteins.  相似文献   

5.
Lysosomal acid phosphatase (LAP) is rapidly internalized from the cell surface due to a tyrosine-containing internalization signal in its 19 amino acid cytoplasmic tail. Measuring the internalization of a series of LAP cytoplasmic tail truncation and substitution mutants revealed that the N-terminal 12 amino acids of the cytoplasmic tail are sufficient for rapid endocytosis and that the hexapeptide 411-PGYRHV-416 is the tyrosine-containing internalization signal. Truncation and substitution mutants of amino acid residues following Val416 can prevent internalization even though these residues do not belong to the internalization signal. It was shown recently that part of the LAP cytoplasmic tail peptide corresponding to 410-PPGY-413 forms a well-ordered beta turn structure in solution. Two-dimensional NMR spectroscopy of two modified LAP tail peptides, in which the single tyrosine was substituted either by phenylalanine or by alanine, revealed that the tendency to form a beta turn is reduced by 25% in the phenylalanine-containing peptide and by approximately 50% in the alanine-containing mutant peptide. Our results suggest, that in the short cytoplasmic tail of LAP tyrosine is required for stabilization of the right turn and that the aromatic ring system of the tyrosine residue is a contact point to the putative cytoplasmic receptor.  相似文献   

6.
The determinants on the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) required for lysosomal enzyme sorting have been analyzed. Mouse L cells deficient in the mannose 6-phosphate/insulin-like growth factor-II receptor were transfected with normal bovine CD-MPR cDNA or cDNAs containing mutations in the 67-amino acid cytoplasmic tail and assayed for their ability to target the lysosomal enzyme cathepsin D to lysosomes. Cells expressing the wild-type bovine CD-MPR sorted 67 +/- 2% of newly synthesized cathepsin D compared with the base-line value of 47 +/- 1%. The presence of mannose 6-phosphate in the medium did not affect the efficiency of cathepsin D sorting, indicating that the routing of the ligand-receptor complex is completely intracellular. Mutant receptors with the carboxyl-terminal His-Leu-Leu-Pro-Met67 residues deleted or replaced with alanines sorted cathepsin D below the base-line value. A mutant receptor with the outermost Pro-Met residues replaced with alanines sorted cathepsin D better than the wild-type receptor, indicating that the essential residues for sorting are the His-Leu-Leu sequence. Disruption of a putative casein kinase II phosphorylation site at Ser57 had no detectable effect on sorting. The mutant receptor with the five-amino acid deletion was able to bind to a phosphopentamannose affinity column, proving that its ligand binding site was grossly intact. Resialylation experiments showed that this mutant receptor recycled from the cell surface to the Golgi at a rate similar to the normal CD-MPR, indicating that the defect in sorting is at the level of the Golgi.  相似文献   

7.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

8.
P Lobel  K Fujimoto  R D Ye  G Griffiths  S Kornfeld 《Cell》1989,57(5):787-796
The cation-independent mannose 6-phosphate receptor (Cl-MPR) sorts newly synthesized lysosomal enzymes in the Golgi and endocytoses extracellular lysosomal enzymes. To determine the role of the 163 amino acid cytoplasmic domain of the Cl-MPR in these functions, receptor-deficient mouse L cells were transfected with normal bovine Cl-MPR cDNA or cDNAs mutated in the cytoplasmic domain. The normal Cl-MPR functioned in sorting and endocytosis. Mutant receptors with 40 and 89 residues deleted from the carboxyl terminus of the cytoplasmic tail functioned normally in endocytosis, but were partially impaired in sorting. Mutant receptors with larger deletions leaving only 7 and 20 residues of the cytoplasmic tail were defective in endocytosis and sorting. A mutant receptor containing alanine instead of tyrosine residues at positions 24 and 26 was defective in endocytosis, and partially impaired in sorting. Receptors deficient in endocytosis accumulated at the cell surface. These results indicate that the cytoplasmic domain of the Cl-MPR contains different signals for rapid endocytosis and efficient lysosomal enzyme sorting.  相似文献   

9.
A tyrosine residue in the cytoplasmic domain of a class of cell surface receptors is necessary, but not sufficient, for internalization through coated pits. To identify the amino acid context enabling a tyrosine to serve as a signal for endocytosis, we mutated the short cytoplasmic domain of a mutant influenza virus hemagglutinin that is competent for internalization, HA-Y543, and determined the effect of each change on internalization. From these results and a comparison of sequences of other proteins recognized by coated pits, a "tyrosine internalization signal" was proposed. Site-directed mutagenesis was employed to insert complete, or incomplete "tyrosine internalization signals" into the cytoplasmic domain of a protein normally not endocytosed, human glycophorin A. Only the complete signal caused internalization of mutant glycophorins by coated pits. The signal is formed by a short amino acid sequence, with polar or basic residues preferred at certain positions on either side of the tyrosine. Amino acids, which in proteins of known structure are frequently found in turns, are clustered near the tyrosine on the side of the signal nearest the transmembrane domain.  相似文献   

10.
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues or introduced a deletion of 36 amino acids by in vitro mutagenesis of a cDNA expression vector for human TR. Upon expression in transfected mouse Ltk- cells, both the wild-type and phosphorylation site mutant receptors mediated transferrin internalization, whereas the truncated receptor did not. These results provide evidence that the cytoplasmic domain, or part of it, is essential for internalization of the TR, but argue against a role for receptor phosphorylation in endocytosis.  相似文献   

11.
The receptor (Fms) for macrophage colony-stimulating factor (M-CSF) is a member of the tyrosine kinase class of growth factor receptors. It maintains survival, stimulates growth, and drives differentiation of the macrophage lineage of hematopoietic cells. Fms accumulates on the cell surface and becomes activated for signal transduction after M-CSF binding and is then internalized via endocytosis for eventual degradation in lysosomes. We have investigated the mechanism of endocytosis as part of the overall signaling process of this receptor and have identified an amino acid segment near the cytoplasmic juxtamembrane region surrounding tyrosine 569 that is important for internalization. Mutation of tyrosine 569 to alanine (Y569A) eliminates ligand-induced rapid endocytosis of receptor molecules. The mutant Fms Y569A also lacks tyrosine kinase activity; however, tyrosine kinase activity is not essential for endocytosis because the kinase inactive receptor Fms K614A does undergo ligand-induced endocytosis, albeit at a reduced rate. Mutation of tyrosine 569 to phenylalanine had no effect on the M-CSF-induced endocytosis of Fms, and a four-amino-acid sequence containing Y-569 could support endocytosis when transferred into the cytoplasmic juxtamembrane region of a glycophorin A construct. These results indicate that tyrosine 569 within the juxtamembrane region of Fms is part of a signal recognition sequence for endocytosis that does not require tyrosine phosphorylation at this site and that this domain also influences the kinase activity of the receptor. These results are consistent with a ligand-dependent step in recognition of the potential cryptic internalization signal.  相似文献   

12.
The effect of brefeldin A (BFA) on the trafficking of the mannose 6-phosphate/insulin-like growth factor II receptor within the endocytic route was analyzed. Treatment with BFA induced a redistribution of the receptor to the cell surface and increased both the binding and internalization of ligands 2-4-fold. The effect of BFA was dose- and time-dependent and reversible. Determinations of transport rates showed that BFA increases the internalization rate and the externalization rate of the receptor. This implies that the higher surface concentration is due to higher concentrations of receptor at the intracellular sites from where they recycle to the cell surface. The effect of BFA was additive to the redistribution induced by insulin-like growth factors I and II and was observed in all human and rodent cell lines analyzed. BFA increased also the cell surface expression of the Mr 46,000 mannose 6-phosphate receptor but not of the transferrin receptor. The results indicate that BFA interferes with the transport of mannose 6-phosphate receptors and affects the endocytosis of lysosomal enzymes by increasing the number of receptors available for recycling to the cell surface.  相似文献   

13.
The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.  相似文献   

14.
The cytoplasmic domains of the erythropoietin receptor essential for signal transduction were identified by assessing a series of truncated and deletional mutant receptors. A 91-amino acid region proximal to the transmembrane domain was required for growth signaling. In this region, residues between 353Pro and 362His and between 278Gln and 308Leu appeared to constitute the essential cytoplasmic domains. These two domains contain the conserved amino acids common in the cytokine receptor superfamily, which indicates that these domains in the cytoplasmic regions of the erythropoietin receptor may be important for interaction with common signal transducers or protein tyrosine kinases.  相似文献   

15.
We have examined the function of the cytoplasmic domain of the polymeric immunoglobulin receptor (pIg-R) by producing two separate deletions in the cytoplasmic domain of the pIg-R, expressing the mutant receptors in polarized MDCK cells, and analyzing each for their effects on receptor and ligand traffic. Deletion of the C-terminal 30 amino acids (726-755) reduces the rate of internalization of receptor-bound ligand from the basolateral surface. However, this mutation has no effect on delivery of receptor from the Golgi to the basolateral surface or the post-endocytotic traffic of receptor and ligand. Mutation of a tyrosine at position 734 to serine produces a receptor with a similar phenotype. If residues 670-707 are deleted from the middle of the cytoplasmic domain, both basolateral delivery and internalization are unaffected. However, unlike wild type, after endocytosis from the basolateral surface, both receptor and ligand are largely degraded. We reported previously that deletion of the entire cytoplasmic domain prevents the basolateral delivery of newly synthesized receptor (Mostov, K.E., de Bruyn Kops, A., and Deitcher, D.L. (1986) Cell 47, 359-364). In contrast, the mutants reported here are delivered to the basolateral surface, suggesting that only residues 653-669 and/or 708-725 are necessary for basolateral delivery. Thus, different deletions in the cytoplasmic domain of the pIg-R can produce mutant receptors which alter different aspects of receptor traffic.  相似文献   

16.
We have isolated and sequenced cDNA clones encoding the entire sequence of the bovine cation-independent mannose 6-phosphate receptor. The deduced 2499-amino acid precursor has a calculated molecular mass of 275 kDa. Analysis of the sequence indicates that the protein has a 44-residue amino-terminal signal sequence, a 2269-residue extracytoplasmic region, a single 23-residue transmembrane region, and a 163-residue carboxyl-terminal cytoplasmic region. The extra-cytoplasmic region consists of 15 contiguous repeating domains, one of which contains a 43-residue insertion that is similar to the type II repeat of fibronectin. The 15 domains have an average size of 147 amino acids and a distinctive pattern of 8 cysteine residues. Alignment of the 15 domains and the extracytoplasmic domain of the cation-dependent mannose 6-phosphate receptor shows that all have sequence similarities and suggests that all are homologous.  相似文献   

17.
W Eberle  C Sander  W Klaus  B Schmidt  K von Figura  C Peters 《Cell》1991,67(6):1203-1209
For rapid endocytosis lysosomal acid phosphatase requires a Tyr-containing signal in its cytoplasmic domain, as do cell surface receptors mediating endocytosis and clustering in coated pits. To determine the structure of the internalization signal an 18 amino acid peptide representing the cytoplasmic tail of lysosomal acid phosphatase was analyzed by two-dimensional nuclear magnetic resonance spectroscopy. Part of the peptide, 5-PPGY-8, forms a well-ordered beta turn of type I in solution. Our result and data on the structure of the endocytosis signal of the low density lipoprotein receptor reported by Bansal and Gierasch in the accompanying paper represent experimental determinations of the three-dimensional structure of protein transport signals and suggest that the essential aromatic amino acid of internalization signals is recognized by a putative cytoplasmic receptor in the structural context of a tight turn.  相似文献   

18.
The internalization signals of several constitutively recycling receptors have recently been identified as regions of four or six amino acids that include an aromatic residue, usually tyrosine. Here, we show that transplanted signals from the low density lipoprotein receptor (LDLR) and cation-independent mannose-6-phosphate receptor (Man-6-PR) promote rapid internalization of the transferrin receptor (TR), directly establishing that recognition signals are interchangeable, self-determined structural motifs and that signals from type I membrane proteins are active in a type II receptor. We also show that the chemical and spatial patterns of critical residues in both four- and six-residue internalization motifs are consistent with a tight turn structure. A six-residue LDLR signal is needed for activity in TR, suggesting that an amino-terminal aromatic side chain is obligatory. In contrast, the carboxy-terminal aromatic side chain in the TR signal can be replaced by a large hydrophobic residue. Thus, internalization signals apparently require an aromatic amino-terminal residue and either an aromatic or large hydrophobic carboxy-terminal residue rather than a conserved tyrosine per se. Consistent with this conclusion, predicted internalization signals from the poly-Ig receptor, YSAF, and asialoglycoprotein receptor (ASGPR) subunit H1, YQDL, also promote internalization of TR.  相似文献   

19.
Macrophages and B-lymphocytes express two major isoforms of Fc receptor (FcRII-B2 and FcRII-B1) that exhibit distinct capacities for endocytosis. This difference in function reflects the presence of an in-frame insertion of 47 amino acids in the cytoplasmic domain of the lymphocyte isoform (FcRII-B1) due to alternative mRNA splicing. By expressing wild type and mutant FcRII cDNAs in fibroblasts, we have now examined the mechanism by which the insertion acts to prevent coated pit localization and endocytosis. We first identified the region of the FcRII-B2 cytoplasmic domain that is required for rapid internalization. Using a biochemical assay for endocytosis and an immuno-EM assay to determine coated pit localization directly, we found that the distal half of the cytoplasmic domain, particularly a region including residues 18-31, as needed for coated pit-mediated endocytosis. Elimination of the tyrosine residues at position 26 and 43, separately or together, had little effect on coated pit localization and a partial effect on endocytosis of ligand. Since the FcRII-B1 insertion occurs in the membrane-proximal region of the cytoplasmic domain (residue 6) not required for internalization, it is unlikely to act by physically disrupting the coated pit localization determinant. In fact, the insertion was found to prevent endocytosis irrespective of its position in the cytoplasmic tail and appeared to selectively exclude the receptor from coated regions. Moreover, receptors bearing the insertion exhibited a temperature- and ligand-dependent association with a detergent-insoluble fraction and with actin filaments, perhaps in part explaining the inability of FcRII-B1 to enter coated pits.  相似文献   

20.
The C-terminal cytoplasmic domain of the polymeric immunoglobulin receptor (pIgR) contains two tyrosine residues, Tyr668 and Tyr734. Previous work identifying Tyr734 as a critical residue in the endocytosis of the pIgR in Madin-Darby canine kidney (MDCK) cells also suggested that a second functional internalization signal was present (Breitfeld, P. P., Casanova, J. E., McKinnon, W. C., and Mostov, K. E. (1990) J. Biol. Chem. 265, 13750-13757). To test this hypothesis, Tyr668 and Tyr734 were mutated singly or together by oligonucleotide-directed mutagenesis of pIgR cDNA, and the mutants were expressed in MDCK cells. The amount of ligand internalized within 5 min from the basolateral membrane by the pIgR in which cytoplasmic tyrosines were mutated separately to Cys668 or Ser734 or together to Cys668, Ser734 was 58, 39, and 20%, respectively, of the internalized by the wild-type pIgR. The cytoplasmic and transmembrane domains of the pIgR, when joined to the external domain of the influenza virus hemagglutinin, retained the capacity to mediate rapid internalization. As with the full-length pIgR, mutation of either tyrosine in the chimera resulted in impairment of endocytosis, with mutation of Tyr734 having a significantly greater effect than mutation on Tyr668 on the initial rate of endocytosis (3 and 44% of control values, respectively). However, unlike the full-length pIgR, mutation of both tyrosines together in the chimera did not reduce internalization further. The two tyrosines in the cytoplasmic sequence of the pIgR, although widely separated in the linear amino acid sequence, both contribute to internalization of the protein, suggesting that both can function as internalization signals. In addition, the correlation between endocytosis and basolateral targeting of the pIgR in MDCK cells was investigated. Neither tyrosine of the cytoplasmic domain was necessary for basolateral targeting of the pIgR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号