首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid composition of Thermus spp., including T. aquaticus ATCC 25104, T. thermophilus DSM 579, T. flavus DSM 674, and seven wild strains was examined. Organisms were tested at a minimum of either 35, 40, or 45°C and at an optimum of 60 or 70°C. Total fatty acid content per dry weight of cells varied between 1.2 and 3.7%, and the quantity of fatty acids was higher at the high temperature range in the majority of strains. At the optimum temperature, strains could be assigned to three chemotaxonomic groups with reference to the ratio of iso C15:0/iso C17:0. In six of the strains the ratio of iso C15:0/iso C17:0 remained unchanged at the minimum temperature, whereas in four strains the ratio was reversed. The proportion of the C15:0 and C17:0 isobranched acids was decreased and the proportion of anteisobranched fatty acids, namely anteiso C15:0, anteiso C17:0, and anteiso C17:1, was increased at the lower temperature range. Some changes were seen in the levels of the n-C16:0 and iso C16:0 acids, but these were strain specific.  相似文献   

2.
A white Thermus sp. strain, NCIMB 11245, showed high levels of anteiso C17:0, anteiso C17:1, normal C16:1, and iso C16:0 with low levels of iso C15:0 + iso C17:0 in comparison to yellow-pigmented strains. The fatty acid composition may be associated with precursor metabolism or the absence of carotene pigmentation.  相似文献   

3.
Two yellow and two red pigmented strains of Thermus were monitored for changes in fatty acid content and composition with reference to growth phase at the optimum temperature. Fatty acid content per mg of dry weight increased as the cultures aged. In addition the quantities of iso C 15:0, iso C 17:0 and iso C 16:0 increased in yellow pigmented strains, but in red pigmented strains, an increase was seen in iso C 15:0, but C 16:0 and iso C 16:0 levels decreased. Thus the fatty acid composition of these organisms varies with growth phase, and shows also strain specific variability.  相似文献   

4.
Previous studies have demonstrated that the branched-chain fatty acid anteiso-C15:0 plays a critical role in the growth of Listeria monocytogenes at low temperatures by ensuring sufficient membrane fluidity. Studies utilizing a chemically defined minimal medium revealed that the anteiso fatty acid precursor isoleucine largely determined the fatty acid profile and fatty acid response of the organism to lowered growth temperature. When isoleucine was sufficient, the fatty acid profile was very uniform, with anteiso fatty acids comprising up to 95% of total fatty acid, and the major fatty acid adjustment to low temperature was fatty acid chain shortening, which resulted in an increase of anteiso-C15:0 solely at the expense of anteiso-C17:0. When isoleucine was not supplied, the fatty acid profile became more complex and was readily modified by leucine, which resulted in a significant increase of corresponding iso fatty acids and an inability to grow at 10°C. Under this condition, the increase of anteiso-C15:0 at low temperature resulted from the combined effect of increasing the anteiso:iso ratio and chain shortening. A branched-chain α-keto acid dehydrogenase-defective strain largely lost the ability to increase the anteiso:iso ratio. Cerulenin, an inhibitor of β-ketoacyl-acyl carrier protein synthase (FabF), induced a similar fatty acid chain shortening as low temperature did. We propose that the anteiso precursor preferences of enzymes in the branched-chain fatty acid biosynthesis pathway ensure a high production of anteiso fatty acids, and cold-regulated chain shortening results in a further increase of anteiso-C15:0 at the expense of anteiso-C17:0.  相似文献   

5.
Cold-loving microorganisms developed numerous adaptation mechanisms allowing them to survive in extremely cold habitats, such as adaptation of the cell membrane. The focus of this study was on the membrane fatty acids of Antarctic Flavobacterium spp., and their adaptation response to cold-stress. Fatty acids and cold-response of Antarctic flavobacteria was also compared to mesophilic and thermophilic members of the genus Flavobacterium. The results showed that the psychrophiles produced more types of major fatty acids than meso- and thermophilic members of this genus, namely C15:1 iso G, C15:0 iso, C15:0 anteiso, C15:1 ω6c, C15:0 iso 3OH, C17:1 ω6c, C16:0 iso 3OH and C17:0 iso 3OH, summed features 3 (C16:1 ω7cand/or C16:1 ω6c) and 9 (C16:0 10-methyl and/or C17:1 iso ω9c). It was shown that the cell membrane of psychrophiles was composed mainly of branched and unsaturated fatty acids. The results also implied that Antarctic flavobacteria mainly used two mechanisms of membrane fluidity alteration in their cold-adaptive response. The first mechanism was based on unsaturation of fatty acids, and the second mechanism on de novo synthesis of branched fatty acids. The alteration of the cell membrane was shown to be similar for all thermotypes of members of the genus Flavobacterium.  相似文献   

6.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

7.
Membranes were prepared from four temperature range variants of Bacillus megaterium: one obligate thermophile, one facultative thermophile, one mesophile, and one facultative psychrophile, covering the temperature interval between 5 and 70 degrees C. The following changes in membrane composition were apparent with increasing growth temperatures: (i) the relative amount of iso fatty acids increased and that of anteiso acids decreased, the ratio of iso acids to anteiso acids being 0.34 at 5 degrees C and 3.95 at 70 degrees C, and the pair iso/anteiso acids thus seemed to parallel the pair saturated/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative amount of long-chain acids (C16 to C18) increased fivefold over that of short-chain acids (C14 and C15) between 5 and 70 degrees C; (iii) the relative amount of phosphatidylethanolamine increased, and this phospholipid accordingly dominated in the thermophilic strains, whereas diphosphatidylglycerol was predominant in the two other strains; and (iv) the ratio of micromoles of phospholipid to milligrams of membrane protein increased three-fold between 5 and 70 degrees C. Moreover, a quantitative variation in membrane proteins was evident between the different strains. Briefly, membrane phospholipids with higher melting points and packing densities appeared to be synthesized at elevated growth temperatures.  相似文献   

8.
Aims: In this work, fatty acid content and profiles were analysed in order to differentiate the species Tenacibaculum maritimum, Tenacibaculum gallaicum, Tenacibaculum discolor and Tenacibaculum ovolyticum that are pathogenic for cultured marine fish and to assess the potential of fatty acid profiles as a tool for epizootiological typing. Methods and Results: The fatty acid methylesters (FAMEs) were extracted from cells grown on marine agar for 48 h at 25°C and were prepared and analysed according to the standard protocol of the MIDI/Hewlett Packard Microbial Identification System. The cellular fatty acid profiles of Tenacibaculum strains tested were characterized by the presence of large amounts of branched (36·1–40·2%) and hydroxylated (29·6–31·7%) fatty acids. The FAME products from the four species significantly (P < 0·05) differed in the content of iso‐C15:03‐OH, iso‐C16:03‐OH, iso‐C15:1G, summed feature 3 (a component that contains C16:1ω7c and/or iso‐C15:0 2‐OH), iso‐C16:0, C17:1ω6c, C15:03‐OH, iso‐C17:03‐OH. Conclusions: Results of present study demonstrated the existence of differences in the fatty acids content between the T. maritimum isolates from different marine fish/geographical origin and between strains of T. maritimum, T. discolor, T. gallaicum and T. ovolyticum. Significance and Impact of the Study: Profiling of fatty acids may be a useful tool to distinguish T. maritimum from other Tenacibaculum species pathogenic for fish as well as for epizootiological differentiation of T. maritimum isolates.  相似文献   

9.
The fatty acid composition of the whole cell and cell wall ofAerobacter aerogenes was studied employing column and gas-chromatographic technique. The cell wall contained a greater percentage of total lipid, complex lipid, and free fatty acids compared to the whole cell. Palmitic acid and oleic acid were the most abundant fatty acids found in the free fatty acid and complex lipid fractions. A saturated C17 fatty acid and small quantities of a branched C16 and iso and anteiso C12 fatty acids were detected. The glyceride fractions of the whole cell and cell wall contained very few fatty acids.  相似文献   

10.
Two moderately halophilic low G + C Gram-positive bacteria were isolated from a sample of salted skate (Class Chondrychthyes, Genus Raja). Phylogenetic analysis of the 16S rRNA gene sequence of strains RH1T and RH4 showed that these organisms represented a novel species of the genus Salinicoccus. The new isolates formed pink–red colonies and flocculated in liquid media, with optimum growth in media containing 4% NaCl and pH of about 8.0. These organisms are aerobic but reduce nitrate to nitrite under anaerobic conditions. Acid is produced from several carbohydrates. Oxidase and catalase were detected. Menaquinone 6 was the major respiratory quinone. The major fatty acids of strains RH1T and RH4 were 15:0 anteiso and 15:0 iso. The G + C contents of DNA were 46.2 and 46.0 mol%, respectively. The peptidoglycan was of A3alpha L-Lys-Gly5–6 type. On the basis of the phylogenetic analyses, physiological and biochemical characteristics, we suggest that strain RH1T (=LMG 22840 = CIP 108576) represents a new species of the genus Salinicoccus, for which we propose the name Salinicoccus salsiraiae.  相似文献   

11.
Previous studies have demonstrated that the branched-chain fatty acid anteiso-C15:0 plays a critical role in the growth of Listeria monocytogenes at low temperatures by ensuring sufficient membrane fluidity. Studies utilizing a chemically defined minimal medium revealed that the anteiso fatty acid precursor isoleucine largely determined the fatty acid profile and fatty acid response of the organism to lowered growth temperature. When isoleucine was sufficient, the fatty acid profile was very uniform, with anteiso fatty acids comprising up to 95% of total fatty acid, and the major fatty acid adjustment to low temperature was fatty acid chain shortening, which resulted in an increase of anteiso-C15:0 solely at the expense of anteiso-C17:0. When isoleucine was not supplied, the fatty acid profile became more complex and was readily modified by leucine, which resulted in a significant increase of corresponding iso fatty acids and an inability to grow at 10 degrees C. Under this condition, the increase of anteiso-C15:0 at low temperature resulted from the combined effect of increasing the anteiso:iso ratio and chain shortening. A branched-chain alpha-keto acid dehydrogenase-defective strain largely lost the ability to increase the anteiso:iso ratio. Cerulenin, an inhibitor of beta-ketoacyl-acyl carrier protein synthase (FabF), induced a similar fatty acid chain shortening as low temperature did. We propose that the anteiso precursor preferences of enzymes in the branched-chain fatty acid biosynthesis pathway ensure a high production of anteiso fatty acids, and cold-regulated chain shortening results in a further increase of anteiso-C15:0 at the expense of anteiso-C17:0.  相似文献   

12.
An actinomycete strain, designated M1T8B9T, was isolated from cow dung in Suwon, Republic of Korea. The isolate was a Gram-positive, nonmotile, and non-spore-forming bacterium. Phylogenetic evaluation based on 16S rRNA gene sequence similarity showed that this isolate belongs to the genus Microbacterium, with its closest neighbors being Microbacterium soli DCY17T (98.2%) and Microbacterium esteraromaticum DSM 8609T (98.0%). The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, and one unknown glycolipid. Strain M1T8B9T contained the major fatty acids C15:0 anteiso, C16:0 iso, C 17:0 anteiso, and C15:0 iso, and the cell-wall peptidoglycan was of type B2β. According to DNA-DNA hybridization studies, strain M1T8B9T showed 42% and 26% relatedness with M. soli DCY17T and M. esteraromaticum DSM 8609T, respectively. On the basis of the data presented, strain M1T8B9T is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium suwonense sp. nov. is proposed. The type strain is M1T8B9T (=KACC 14058T =NBRC 106310T).  相似文献   

13.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

14.
As understanding of the evolutionary relationships between strains and species of root nodule bacteria increases the need for a rapid identification method that correlates well with phylogenetic relationships is clear. We have examined 123 strains ofRhizobium: R. fredii (19),R. galegae (20),R. leguminosarum (22),R. loti (17),R. meliloti (21), andR. tropici (18) and six unknowns. All strains were grown on modified tryptone yeast-extract (TY) agar, as log phase cultures, scraped from the agar, lysed, and the released fatty acids derivatized to their corresponding methyl esters. The methyl esters were analysed by gas-chromatography using the MIDI/Hewlett-Packard Microbial Identification System. All species studied contained 16:0, 17:0, 18:0 and 19cyclow9C fatty acids but onlyR loti andR tropici produced 12:0 3 OH,13:0 iso 3 OH,18:1w9C and 15:0 iso 3 OH,17:0 iso 3 OH and 20:2w6,9C fatty acids respectively. Principal component analysis was used to show that strains could be divided into clusters corresponding to the six species. Fatty acid profiles for each species were developed and these correctly identified at least 95% of the strains belonging to each species. A dendrogram is presented showing the relationships betweenRhizobium species based on fatty acid composition. The data base was used to identify unknown soil isolates as strains ofRhizobium lacking a symbiotic plasmid and a bacterium capable of expressing a symbiotic plasmid fromR. leguminosarum asSphingobacterium spiritovorum.  相似文献   

15.
Transgene-tagged mutants of Chlamydomonas reinhardtii were generated by random insertional mutagenesis for screening of mutants of carbohydrate and fatty acid metabolism. Approximately 2,500 insertion mutants tagged with the aph7″ gene were produced from one mutagenesis in three weeks. To establish a rapid screening system for numerous insertional lines, whole cell extracts of 100 insertional lines were subjected to Fourier transform infrared spectroscopy (FT-IR) and gas chromatography (GC) analysis combined with multivariate analysis. Mutant lines 28, 67, and 90 showed dramatic differences in the carbohydrate (1,000∼1,200 cm−1) and amide (1,500∼1,700 cm−1) regions of the FT-IR spectrum compared to wild type strain CC-124. Separate GC analysis also showed that 16:0 iso, palmitic acid (16:0), and oleic acid (18:1) were the major fatty acids in the wild type strain. In mutant 80, the relative content ratio of 16:0 iso in total fatty acids was significantly lower than in wild type, whereas the ratios of palmitic acid and oleic acid to 16:0 iso were higher. In mutant 95, the ratio of 16:0 iso to total fatty acids was increased, whereas ratios of palmitic acid and oleic acid to 16:0 iso were decreased. In particular, mutant 57 showed remarkably different fatty acid patterns with novel peaks of long-chain fatty acids having more than 20 carbon atoms. The results of this study show that FT-IR and GC combined with multivariate analysis enable rapid selection of mutants of carbohydrate and fatty acid metabolism in C. reinhardtii.  相似文献   

16.
A long-rod-shaped thermophilic microorganism, strain KW11, was isolated from a hot springs located in the Kawarayu, Gunma, Japan. Cloning and preliminary sequence analysis of 16S rDNA showed that this isolate belongs to the genus Thermus. The cells were 10–20 m long, about 0.8 m in diameter, and produced no pigment in contrast with most of the Thermus species previously reported. KW11 was an aerobic heterotroph and grew at temperatures ranging from 40–73°C, with optimal growth occurring at 68°C. The pH range for growth was from 5.8–8.9, with optimal growth around pH 7. KW11 was sensitive to ampicillin, penicillin G, kanamycin, and streptomycin. The G+C content of DNA was 69 mol%. The main fatty acids were 16:0 (52.9%), iso-15:0 (22.1%), and iso-17:0 (15.6%). The 16S rDNA sequence of KW11 showed 96.0, 95.8, and 95.4% similarity with the sequences of T. aquaticus, T. igniterrae, and T. thermophilus, respectively, and less than 95% with other Thermus species. The physiological differences and phylogenetic evidence indicated that strain KW11 represents T. kawarayensis, a novel species of the genus Thermus. The type strain is isolate KW11T (JCM12314, DSM16200).  相似文献   

17.
A Gram-positive, coccoid bacterial isolate (02-St-019/1T), forming beige pigmented colonies was obtained from an indoor air sample. Based on 16S rRNA gene sequence similarity studies it was determined that this isolate 02-St-019/1T belonged to the genus Kytococcus, showing sequence similarties of 98.6% to Kytococcus schroeteri DSM 13884T and 98.3% to Kytococcus sedentarius DSM 20547T, respectively. The diagnostic diaminoacid of the peptidoglycan was lysine, cell wall sugars were ribose and xylose. The major menaquinones detected were MK-7 and MK-8. The polar lipid profile consisted of the major phospholipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine and phosphatidylinositol mannoside. Fatty acid patterns were composed of major amounts of the iso- and anteiso-branched fatty acids anteiso C17:0, iso C15:0 and iso C17:0 and unsaturated fatty acids (C17:1 ω8c, iso C17:1 ω9c, and C17:1 ω8c) with smaller amounts of the straight-chain fatty acids C15:0, C16:0 and C17:0. The results of DNA–DNA hybridizations and physiological and biochemical tests clearly allowed a genotypic and phenotypic differentiation of strain 02-St-019/1T from the two described Kytococcus species. On the basis of these results a novel species to be named Kytococcus aerolatus sp. nov., is proposed, with the type strain 02-St-019/1T (=DSM 22179T=CCM 7639T).  相似文献   

18.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

19.
Aims: This study provides a first approach to observing the alterations of the cell membrane lipids in the adaptation response of Listeria monocytogenes to the sanitizer benzalkonium chloride. Methods and Results: A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown when exposed to benzalkonium chloride is compared to cells optimally grown. The adaptation mechanism of L. monocytogenes in the presence of benzalkonium chloride caused (i) an increase in saturated‐chain fatty acids (mainly C16:0 and C18:0) and unsaturated fatty acids (mainly C16:1 and C18:1) at the expense of branched‐chain fatty acids (mainly Ca‐15:0 and Ca‐17:0) mainly because of neutral fatty acids; (ii) no alteration in the percentage of neutral and polar lipid content among total lipids; (iii) a decrease in lipid phosphorus and (iv) an obvious increase in the anionic phospholipids and a decrease in the amphiphilic phosphoaminolipid. Conclusions: These lipid changes could lead to decreased membrane fluidity and also to modifications of physicochemical properties of cell surface and thus changes in bacterial adhesion to abiotic surfaces. Significance and Impact of the Study: The adaptation and resistance of L. monocytogenes to disinfectants is able to change its physiology to allow growth in food‐processing plants. Understanding microbial stress response mechanisms would improve the effective use of disinfectants.  相似文献   

20.
A mutant of Streptomyces fradiae which requires oleic acid for neomycin formation was isolated and the effects of exogenous fatty acids and other additives on the formation of neomycin were studied. Palmitic acid and high concentration of sodium ions could replace oleic acid in neomycin formation. The fatty acid spectrum of the mutant strain ST–5B was quite different from that of the parent strain 3123. The major fatty acid components of the mutant and the parent were anteiso 15:0 and iso 16: 0, respectively. However the fatty acid composition of the mutant was changed from the anteiso 15: 0-type to the parental iso 16: 0-type by the supplement of oleic acid or high concentration of sodium ions in the medium. In the case of palmitic acid, the major fatty acid component of the mutant cells was changed from anteriso 15: 0 to normal 16:0. The role of these additives in neomycin formation by the mutant is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号