首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because adaptation to physiological changes in cellular energy demand is a crucial imperative for life, mitochondrial oxidative phosphorylation is tightly controlled by ATP consumption. Nevertheless, the mechanisms permitting such large variations in ATP synthesis capacity, as well as the consequence on the overall efficiency of oxidative phosphorylation, are not known. By investigating several physiological models in vivo in rats (hyper- and hypothyroidism, polyunsaturated fatty acid deficiency, and chronic ethanol intoxication) we found that the increase in hepatocyte respiration (from 9.8 to 22.7 nmol of O(2)/min/mg dry cells) was tightly correlated with total mitochondrial cytochrome content, expressed both per mg dry cells or per mg mitochondrial protein. Moreover, this increase in total cytochrome content was accompanied by an increase in the respective proportion of cytochrome oxidase; while total cytochrome content increased 2-fold (from 0.341 +/- 0.021 to 0.821 +/- 0.024 nmol/mg protein), cytochrome oxidase increased 10-fold (from 0.020 +/- 0.002 to 0.224 +/- 0.006 nmol/mg protein). This modification was associated with a decrease in the overall efficiency of the respiratory chain. Since cytochrome oxidase is well recognized for slippage between redox reactions and proton pumping, we suggest that this dramatic increase in cytochrome oxidase is responsible for the decrease in the overall efficiency of respiratory chain and, in turn, of ATP synthesis yield, linked to the adaptive increase in oxidative phosphorylation capacity.  相似文献   

2.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

3.
Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.  相似文献   

4.
We aimed to study the change in mitochondrial oxidative phosphorylation efficiency occurring at the early stage of septic shock in an experimental model. Thirty-six male Wistar rats were divided into two groups. In the first group, a cecal ligation and puncture (CLP) was carried out to induce septic shock for 5 h. The second group includes sham-operated rats and constitutes the control group. Blood gas analysis, alanine amino transferase, and lactic acid dosages were assayed 5 h after surgery. Liver mitochondria were isolated for in vitro functional characterization, including mitochondrial respiratory parameters, oxidative phosphorylation efficiency, oxi-radical production, membrane potential, and cytochrome c oxidase activity and content. Liver interleukin 1β (IL-1β) and tumor necrosis α mRNA levels were determined. Septic shock induced a severe hypotension occurring 180 min after CLP in association with a metabolic acidosis, an increase in plasma alanine amino transferase, liver IL-1β gene expression, and mitochondrial reactive oxygen species production. The rates of mitochondrial oxygen consumption and the activity and content of cytochrome c oxidase were significantly decreased while no alterations in the oxidative phosphorylation efficiency and inner membrane integrity were found. These results show that contrary to what was expected, liver mitochondria felt to adjust their oxidative phosphorylation efficiency in response to the decrease in the mitochondrial oxidative activity induced by CLP. This loss of mitochondrial bioenergetics plasticity might be related to mitochondrial oxidative stress and liver cytokines production.  相似文献   

5.
The effect of 3-nitropropionate (3-NPA)on oxidative phosphorylation by using mitochondria prepared from both rat liver and brain were investigated in connection with the toxicity of this material. It was found that 3-NPA inhibited oxidative phosphorylation. In this inhibition, the uptake of inorganic phosphate was blocked but the oxygen uptake was not influenced at all. Furthermore, increase in ATPase activity of intact mitochondria was shown by the addition of 3-NPA. Results showed that 3-NPA disturbed oxidative phosphorylation as an uncoupler. However, the degree of inhibition by 3-NPA was not so high in comparison with other well-known uncouplers.

Thus the toxicity of 3-NPA is not due to the inhibition of oxidative phosphorylation. 3-NPA also does not affect on cytochrome oxidase activity.  相似文献   

6.
We have studied the effect of nitric oxide (NO) and potassium cyanide (KCN) on oxidative phosphorylation efficiency. Concentrations of NO or KCN that decrease resting oxygen consumption by 10–20% increased oxidative phosphorylation efficiency in mitochondria oxidizing succinate or palmitoyl-L-carnitine, but not in mitochondria oxidizing malate plus glutamate. When compared to malate plus glutamate, succinate or palmitoyl-L-carnitine reduced the redox state of cytochrome oxidase. The relationship between membrane potential and oxygen consumption rates was measured at different degrees of ATP synthesis. The use of malate plus glutamate instead of succinate (that changes the H+/2e stoichiometry of the respiratory chain) affected the relationship, whereas a change in membrane permeability did not affect it. NO or KCN also affected the relationship, suggesting that they change the H+/2e stoichiometry of the respiratory chain. We propose that NO may be a natural short-term regulator of mitochondrial physiology that increases oxidative phosphorylation efficiency in a redox-sensitive manner by decreasing the slipping in the proton pumps.  相似文献   

7.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

8.
Nonalcoholic fatty liver disease (NAFLD) has become common liver disease in Western countries. There is accumulating evidence that mitochondria play a key role in NAFLD. Nevertheless, the mitochondrial consequences of steatohepatitis are still unknown. The bioenergetic changes induced in a methionine- and choline-deficient diet (MCDD) model of steatohepatitis were studied in rats. Liver mitochondria from MCDD rats exhibited a higher rate of oxidative phosphorylation with various substrates, a rise in cytochrome oxidase (COX) activity, and an increased content in cytochrome aa3. This higher oxidative activity was associated with a low efficiency of the oxidative phosphorylation (ATP/O, i.e., number of ATP synthesized/natom O consumed). Addition of a low concentration of cyanide, a specific COX inhibitor, restored the efficiency of mitochondria from MCDD rats back to the control level. Furthermore, the relation between respiratory rate and protonmotive force (in the nonphosphorylating state) was shifted to the left in mitochondria from MCDD rats, with or without cyanide. These results indicated that, in MCDD rats, mitochondrial ATP synthesis efficiency was decreased in relation to both proton pump slipping at the COX level and increased proton leak although the relative contribution of each phenomenon could not be discriminated. MCDD mitochondria also showed a low reactive oxygen species production and a high lipid oxidation potential. We conclude that, in MCDD-fed rats, liver mitochondria exhibit an energy wastage that may contribute to limit steatosis and oxidative stress in this model of steatohepatitis.  相似文献   

9.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

10.
The activity of the cyanide-resistant alternative oxidase (pathway) of Yarrowia lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

11.
During spermatogenesis in the crab, Carcinus maenas, mitochondria in the developing spermatids degenerate. In close association with mitochondrial fragments in late spermatids, an elaborate lattice-like complex of fused membranes is formed and lies in a position adjacent to the acrosome. Mature sperm possess no mitochondria, but a whorl of membranes is present alongside the acrosome in the diffuse nucleus. To ascertain whether or not cytochrome c oxidase activity is lost as the mitochondria disintegrate, differentiating Carcinus maenas spermatids and mature sperm have been studied cytochemically. Cytochfome c oxidase activity was localised by means of the osmophilic compound 3,3'-diaminobenzidine (DAB). Cytochrome c oxidase activity is confined to the cristae of mitochondria in the testis. As spermatids mature most mitochondria are lost. A few mitochondrial fragments may be caught up within the lamellar complex. While they are recognisalbe as mitochondria they retain cytochrome c oxidase activity. The lamellar complex does not show this enzyme activity. These results therefore suggest that the mature sperm of Carcinus maenas do not contain the enzymes normally incorporated in the mitochondrial membrane, capable of oxidative phosphorylation.  相似文献   

12.
Effect of methotrexate (MTX) on mitochondrial oxygen uptake, oxidative phosphorylation and on the activity of several enzymes linked to respiratory chain was studied. MTX was able to inhibit state III respiration activated by ADP and to decrease the respiratory coefficient with the substrates alpha-ketoglutarate and glutamate; these effects became pronounced when mitochondria were pre-incubated with MTX for 10 min. No effect was observed on ATPase activity of undamaged or broken mitochondria; the same was true for NADH-oxidase, NADH-dehydrogenase, NADH-cytochrome c reductase, succinate oxidase, and cytochrome c oxidase activity. The effect on the steady-state of cytochrome b, as well as, the inhibitory effect on state III of respiration with NAD+-linked substrates, offers a reasonable possibility to suggesting that the inhibition site of MTX could be in a place anterior to cytochrome b region, and not linked to respiratory chain.  相似文献   

13.
The question arises as to the effect of ethanol on the actual yield of oxidative phosphorylation in the whole liver because of contradictory results reported in isolated hepatic mitochondria.The adenosine triphosphate (ATP) content of liver isolated from fed rats and perfused in the presence (10 mM) and absence of ethanol was continuously evaluated using 31P Nuclear Magnetic Resonance (NMR). An accurate estimation of mitochondrial ATP synthesis in the whole organ was obtained by subtracting the glycolytic ATP supply from the total ATP production. Simultaneously, the respiratory activity was assessed using O(2) Clark electrodes.The data indicate that ethanol enhanced the net consumption of ATP, leading to a new steady state of the ATP content. ATP synthesis was also found higher under ethanol [1.86+/-0.02 micromol/min g wet weight (min g ww)] than in control [1.44+/-0.18 micromol/min g ww]. However, mitochondrial respiration remained unchanged [2.20+/-0.13 micromol/min g ww] and, consequently, the in situ mitochondrial ATP/O ratio increased from 0.33+/-0.035 (control) to 0.42+/-0.015 (ethanol).The increase of the oxidative phosphorylation yield in the whole liver may be linked to the decrease in cytochrome oxidase activity induced by ethanol [FEBS Lett. 468 (2000) 239]. The significant raise (27%) of the ATP/O ratio was not sufficient to maintain the ATP level following ethanol-increased ATP consumption.  相似文献   

14.
The purpose of this study was to examine hepatocyte mitochondrion respiratory chain in rats subjected to ethanol and CCl4 administration within 4 weeks to induce an experimental hepatitis. Oxygen consumption was determined as a measure of mitochondrion respiration chain function. The development of liver pathology was accompanied by fat accumulation, fibrosis, triglycerides and lipid peroxidation increase. Respiratory chain characteristics damage was found. Endogenous oxygen consumption by hepatocytes isolated from pathological liver was found 34% higher compared to control. Exogenous malate and pyruvate substrates delivery didn't stimulate cell respiration. Rotenone (the inhibitor of the I complex) decreased 27% oxygen consumption by pathological hepatocytes while dinitrophenol produced 37% cell respiration increase. States 3 (V3) and 4 (V4) mitochondrial respiration with malate + glutamate as substrates were found to be 70 and 56% higher accordingly compared to control level. V3 and Vd (dinitrophenol respiration) for mitochondria from pathological liver didn't differ from control when being tested with malate + glutamate or succinate as substrates. Cytochrome c oxidase activity increased (+ 80%) as compared to control. Administration of hypolipidemic agent simvastatin simultaneously with ethanol and CC14 resulted in decrease liver fat accumulation, fibrosis and peroxidation products. Simvastatin administration caused hepatocyte endogenous respiration decrease while malate + pyruvate, dinitrophenol or rotenone delivery produced oxygen consumption alterations similar to control. However, when isolated mitochondria from liver of simvastatin treated animals being tested the decrease of oxidative phosphorylation coupling for substrates malate + glutamate was found. While simvastatin did not cause changes in cytochrome c oxidase activity. We propose the hypothesis that the NCCR complex in rat mitochondria with experimental toxic hepatitis works extensively on superoxydanion production. Alterations of SCCR, Coenzyme Q-cytochrome c-reductase, cytochrome c oxidase and ATP-synthase activities have an adaptive nature to compensate for impaired NCCR function.  相似文献   

15.
Whole cells, homogenates and mitochondrial obtained from the livers of albino rats which were starved for 6 days or more showed a 50% decrease in oxidative activity. The decrease could be corrected by the addition of cytochrome c in vitro. The phosphorylative activity of mitochondria remained unaffected. The decrease in oxidative rate was not observed when starving animals were given the anti-hypercholesterolaemic drug clofibrate. The total cellular concentration of cytochrome c was not affected by starvation. However, the concentration of the pigment in hepatic mitochondria isolated from starving animals was less than half that in normal mitochondria. Clofibrate-treated animals did not show a decreased concentration of cytochrome c in hepatic mitochondria. Mitochondria isolated from starving animals, though deficient in cytochrome c, did not show any decrease in succinate dehydrogenase activity or in the rate of substrate-dependent reduction of potassium ferricyanide or attendant phosphorylation. In coupled mitochondria, ferricyanide may not accept electrons from the cytochrome c in the respiratory chain. Starvation decreases the concentration of high-affinity binding sites for cytochrome c on the mitochondrial membrane. The dissociation constant increases in magnitude.  相似文献   

16.
The question arises as to the effect of ethanol on the actual yield of oxidative phosphorylation in the whole liver because of contradictory results reported in isolated hepatic mitochondria.The adenosine triphosphate (ATP) content of liver isolated from fed rats and perfused in the presence (10 mM) and absence of ethanol was continuously evaluated using 31P Nuclear Magnetic Resonance (NMR). An accurate estimation of mitochondrial ATP synthesis in the whole organ was obtained by subtracting the glycolytic ATP supply from the total ATP production. Simultaneously, the respiratory activity was assessed using O2 Clark electrodes.The data indicate that ethanol enhanced the net consumption of ATP, leading to a new steady state of the ATP content. ATP synthesis was also found higher under ethanol [1.86±0.02 μmol/min g wet weight (min g ww)] than in control [1.44±0.18 μmol/min g ww]. However, mitochondrial respiration remained unchanged [2.20±0.13 μmol/min g ww] and, consequently, the in situ mitochondrial ATP/O ratio increased from 0.33±0.035 (control) to 0.42±0.015 (ethanol).The increase of the oxidative phosphorylation yield in the whole liver may be linked to the decrease in cytochrome oxidase activity induced by ethanol [FEBS Lett. 468 (2000) 239]. The significant raise (27%) of the ATP/O ratio was not sufficient to maintain the ATP level following ethanol-increased ATP consumption.  相似文献   

17.
The in vitro effects of PR toxin, a toxic secondary metabolite produced by certain strains of Penicillium roqueforti, on the membrane structure and function of rat liver mitochondria were investigated. It was found that the respiratory control and oxidative phosphorylation of the isolated mitochondria decreased concomitantly when the toxin was added to the assay system. The respiratory control ratio decreased about 60% and the ADP/O ratio decreased about 40% upon addition of 3.1 X 10(-5) M PR toxin to the highly coupled mitochondria. These findings suggest that PR toxin impairs the structural integrity of mitochondrial membranes. On the other hand, the toxin inhibited mitochondrial respiratory functions. It exhibited noncompetitive inhibitions to succinate oxidase, succinate-cytochrome c reductase, and succinate dehydrogenase activities of the mitochondrial respiratory chain. The inhibitory constants of PR toxin to these three enzyme systems were estimated to be 5.1 X 10(-6), 2.4 X 10(-5), and 5.2 X 10(-5) M, respectively. Moreover, PR toxin was found to change the spectral features of succinate-reduced cytochrome b and cytochrome c1 in succinate-cytochrome c reductase and inhibited the electron transfer between the two cytochromes. These observations indicate that the electron transfer function of succinate-cytochrome c reductase was perturbed by the toxin. However, PR toxin did not show significant inhibition of either cytochrome oxidase or NADH dehydrogenase activity of the mitochondria. It is thus concluded that PR toxin exerts its effect on the mitochondrial respiration and oxidative phosphorylation through action on the membrane and the succinate-cytochrome c reductase complex of the mitochondria.  相似文献   

18.
Characterization and function of mitochondrial nitric-oxide synthase   总被引:9,自引:0,他引:9  
The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K(m) of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues.  相似文献   

19.
Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos. These findings establish that during the chick-embryo developmental period the mitochondria are more sensitive to ethanol than are the microsomes.  相似文献   

20.
The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism—the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号