首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gender of dimorphic plant species is often affected by ecophysiological variables. Differences have been interpreted as a response of the sexes to meet specific resource demands associated with reproduction. This study investigated whether sex‐specific variations in ecophysiological traits in response to water availability determine the performance of each sex in different habitats, and therefore promote extreme spatial segregation of the sexes in the subdioecious plant, Honckenya peploides. Twenty‐seven plants of each sex were individually potted in dune sand and assigned randomly to one of three water treatments. Well‐watered plants were watered daily to field capacity, whereas plants in the moderate and high‐water stress treatments received 40% and 20%, respectively, of the water given to well‐watered plants. Photochemical efficiency, leaf spectral properties and components of relative growth rate (leaf area ratio and net assimilation rate) were measured. Photochemical efficiencies integrated over time were higher in male than in female plants. Water deficit decreased maximum quantum yield in female plants more rapidly than in male plants, but female plants (unlike male plants) had recovered to initial values by the end of the experiment. Maximum quantum yield in male plants was more affected by water stress than in female plants, indicating that male plants were more susceptible to photoinhibition. The two sexes did not differ in growth rate, but male plants invested a higher proportion of their biomass in leaves, had a higher leaf area per unit biomass and lower net assimilation rate relative to female plants. Female plants had a higher water content and succulence than male plants. Differences in stomatal density between the sexes depended on water availability. The results suggest that the two sexes of H. peploides have different strategies for coping with water stress. The study also provides evidence of sex differences in allocation traits. We conclude that between‐sex differences in ecophysiological and allocation traits may contribute to explain habitat‐related between‐sex differences in performance and, therefore, the spatial segregation of the sexes.  相似文献   

2.
Both abiotic conditions and resource levels affect the performance of plants on coastal dune systems. On the foredune, environmental factors are particularly limiting for plant growth and these vary along a short topographical gradient, from the foot to the ridge. On subarctic coastal dunes in northeastern Canada, this topographical gradient is paralleled by a plant sequence that typically involves Honckenya peploides, Elymus mollis, and Lathyrus japonicus. In this study, field nutrient additions were carried out to evaluate the importance of N and/or P limitation on foredune plant performance. Also, glasshouse experiments were done to determine the significance of interactions between substrate resources (i.e., nutrients and water), and between substrate resources (i.e., nutrients) and an abiotic condition (i.e., salt spray) on the growth of a dune species. Field nutrient additions did not result in any significant increase in plant biomass, although nutrients were accumulated in the rhizomes of all three species present on the foredune and in the aboveground tissues of Elymus. Glasshouse experiments on Elymus showed that nutrient addition could increase plant biomass. However, water availability and salt spray interfered with nutrient use by the plants. I suggest that such interactions between resources and abiotic conditions may significantly affect plant performance and plant sequence on the foredune of coastal dune systems.  相似文献   

3.
Isolation, characterization, and analysis of Leymus-specific DNA sequences.   总被引:1,自引:0,他引:1  
Genomic Southern hybridization using labeled total genomic DNA of Leymus mollis as probe showed intense hybridization signals on all restriction enzyme digested DNA from five species of Leymus Hochst., and four species of Psathyrostachys Nevski. Experiments using the same L. mollis probe, but with unlabeled blocking DNA from Psathyrostachys, showed no hybridization at all. These two genera evidently had the same genomic content. Southern hybridization without blocking allowed identification of DNA fragments abundant in Leymus and Psathyrostachys. Fragments potentially specific to Leymus were cloned. Five repetitive DNA clones from L. mollis and L. arenarius were characterized: pLmIs1, pLmIs44, pLmIs51, pLmIs53, and pLaIs56. These clones hybridized to both Leymus and Psathyrostachys on Southern blots - no clone hybridized to only one of these genera. Both Southern blot and fluorescence in situ hybridization (FISH) experiments showed that all the clones contained dispersed repetitive sequences. They painted all and whole chromosomes uniformly except at centromeres, telomeres, and nucleolar organiser regions. Three of these clones, i.e., pLmIs1, pLmIs44, and pLmIs53, were essentially specific to Leymus and Psathyrostachys - little or no hybridization was detected in other genera such as Triticum, Hordeum, Thinopyrum, or Elymus. Sequence analysis further revealed that the clones were part of retroelements. In particular, the clone pLmIs44 produced hybridization profiles suitable for analysis of genetic relatedness among species. The present study shows that Leymus and Psathyrostachys share the same basic genome, Ns, and therefore provides strong evidence for combining these two genera.  相似文献   

4.
Low water and nutrient availability and significant sand movement, salt spray, and soil salinity are typical of coastal dunes. These conditions are generally unfavorable for the various life stages of plants and especially for seedlings. However, the intensity of these stresses decreases landward, even over short distances, with significant effects on community composition. On coastal dunes in subarctic Québec, Canada, Honckenya peploides (Caryophyllaceae) colonizes the upper beach where it forms small mounds called embryo dunes. Leymus mollis (Poaceae) is mostly restricted to the foredune; however, a few individuals successfully establish on the upper beach, particularly on embryo dunes. We hypothesized that this differential distribution is associated with differences in the tolerance of the two species' seedlings to physical stresses. Honckenya peploides and L. mollis seedling tolerance to sand burial, salt spray, soil salinity, and nutrient and water availability was assessed in greenhouse experiments. Unexpectedly, our results showed that tolerance to sand burial, salt spray, and soil salinity was lower for H. peploides than for L. mollis. If seeds are available and seedlings tolerate the conditions prevailing on the upper beach well, why are mature L. mollis individuals rare in this habitat? We suggest that massive abrasion events (e.g., violent storm waves and ice thrust) restrict the presence of the species on the upper beach.  相似文献   

5.
Abstract Spinifex sericeus, a common coastal sand dune grass, typically exhibits decreased vigour in the more stabilized section of the dunes when compared with the active foredune. These differences in vigour appear to be related to different environmental conditions across the dunes such as sand burial and salt spray deposition, both generally decreasing with distance inland. An experiment following the fate of foliar and root applications of 22Na indicated that it may be taken up by the roots or the foliage and then translocated throughout the whole plant, and perhaps even extruded by the roots. Salt spray appeared to have a positive effect on the growth of S. sericeus when applied in conjunction with N and P but had no effect when N and P were not added. Adding acid-washed or non acid-washed foredune sand also resulted in a positive growth response. The results of these experiments indicate that the vigorous growth of S. sericeus on the dynamic sections of the foredunes is due to a stimulation of growth caused by sand deposition.  相似文献   

6.
Species diversity of arbuscular mycorrhizal fungi (AMF) was assessed along a dune stabilization gradient (embryonic dune, foredune and fixed dune) at Praia da Joaquina, Ilha de Santa Catarina. The dunes were chosen as a case study to assess whether diversity and mycorrhizal inoculum potential (MIP) increase along the gradient. Ten soil samples were collected from each stage and pooled, and then six 100-g soil sub-samples were taken to identify and enumerate spores. Twelve AMF species were detected, and all three families in Glomales were represented. Gigasporaceae species dominated the embryonic dune, while Glomaceae species dominated the fixed dune. Total spore numbers and richness increased as the dunes became more stabilized. However, indices of Margalef, Simpson and Shannon reached maximal values at different stages, suggesting that species abundance was different among stages. In both embryonic and fixed dunes, species abundance data fit the broken stick model, while in the foredune the log series model best described the data. The MIP followed spore numbers and increased along the gradient, suggesting that spores are important in initiating root colonization in this system. Relationships between edaphic factors and functional roles of Glomales families as determinants of AMF distribution are discussed. This document was subjected to peer and administrative reviews of the U.S. EPA at the National Health and Environmental Effects Research Laboratory, Western Ecology Division, and was approved for publication. Mention of trade names or commercial products in this paper does not constitute endorsement or recommendation of use.  相似文献   

7.
The sand dune habitats found on barrier islands and other coastal areas support a dynamic plant community while protecting areas further inland from waves and wind. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation, likely because of the interplay among plant succession, exposure, disturbance, and resource availability. However, surprisingly few long-term data are available describing dune vegetation patterns. A nine-year census of 294 plots on St. George Island, Florida suggests that the major climatic drivers of vegetation patterns vary with habitat. Community structure is correlated with the elevation, soil moisture, and percent soil ash of each 1 m2 plot. Major storms reduce species richness in all three habitats. Principle coordinate analysis suggests that changes in the plant communities through time are caused by climatic events: changes in foredune vegetation are correlated with temperature and summer precipitation, interdune vegetation with storm surge, and backdune vegetation with precipitation and storm surge. We suggest that the plant communities in foredune, interdune, and backdune habitats tend to undergo succession toward particular compositions of species, with climatic disturbances pushing the communities away from these more deterministic trajectories.  相似文献   

8.
Changes in the ecophysiological performance of a plant species due to different environmental conditions generally reflect adaptations to the habitat where the plant grows and are often related to its survival capacity in a particular place. We examined this with the dioecious shrub Thymelaea velutina, in two contrasting populations representing the extremes of the altitudinal gradient where the species lives (coastal dunes and mountain habitats over 1000 m). We measured net photosynthetic rates and stomatal conductance, estimated the level of plant stress by chlorophyll fluorescence, and assessed their correlations with growth rate, plant size, flower production and fruit set. We hypothesized that plants at high altitude were more photosynthetically stressed than at sea level and expected a gender × habitat interaction in performance as females need more resources than males. Plants in the mountain experienced chronic photoinhibition during winter and a reduced photosynthetic performance both in winter and spring compared to plants in coastal dunes. However, there was no association between any of the fluorescence variables and either plant growth or fecundity, suggesting that other factors are involved determining performance. Mountain plants showed also an apparent lower capacity of heat dissipation to excessive radiation than dune plants. In the dunes, the greater leaf area and mass can lead to a higher photosynthetic carbon gain by whole individuals compared to plants in the mountain. No effect of gender was detected on the ecophysiological performance of this species, which we partly attribute to the small size of fruits of the female plants.  相似文献   

9.
Anamthawat-Jónsson K 《Hereditas》2001,135(2-3):247-253
Genetic and genomic relationships among three taxonomically related species of Leymus, northern European L. arenarius (octoploid, 2n = 56), northern American/Pacific L. mollis (tetraploid, 2n = 28) and central Eurasian L. racemosus (tetraploid, 2n = 28), were examined using molecular and cytogenetic methods. The amplified fragment length polymorphism (AFLP) analysis clearly differentiated Icelandic populations of L. arenarius from Alaskan populations of L. mollis. The former group is more genetically homogeneous than the latter. Leymus arenarius in Iceland has a common gene pool and a relatively recent origin. The Alaskan L. mollis, on the other hand, is probably a glacial survival that has accumulated high level of genetic variation and has differentiated into subspecies. Analysis of the 18S-26S ribosomal genes, by restriction fragment length polymorphism (RFLP) and fluorescence in situ hybridization (FISH), revealed a very close relationship between the octoploid northern European L. arenarius and the tetraploid Eurasian L. racemosus, such that the former could have originated from the latter, probably via interspecific hybridization. Leymus-specific DNA sequences were isolated and used for analyzing genetic relatedness among five Leymus species and four Psathyrostachys species. The RFLP analysis of retrotransposon sequence pLm44 and ribosomal clone pTa71 clearly revealed a close relationship between these two genera, i.e. higher variation was found within genera than between them. The results support the previous notion that Leymus is autopolyploid having all genomes being designated Ns as in Psathyrostachys, but a major taxonomic revision of this group would require analysis of more species.  相似文献   

10.
R R Wang  K B Jensen 《Génome》1994,37(2):231-235
To test the presence of a J genome in the type species of Leymus, L. arenarius, its total genomic DNA and that of tetraploids L. mollis, L. salinus ssp. salmonis, L. ambiguus, L. chinensis, L. secalinus, L. alaicus ssp. karataviensis, and L. innovatus were probed with the 277-bp insert of pLeUCD2, which can hybridize with the J, S, and P but not with the N, R, V, Q, I, T, and ABD genomes. The DNA probe hybridized with PalI- or TaqI-digested total DNAs from Thinopyrum elongatum (JeJe diploid) and T. elongatum x Psathyrostachys juncea (JeN hybrid), but not with those from L. arenarius (NNNNXXXX octoploid) and all tetraploid Leymus species (NNXX). Attempts to cross diploid Thinopyrum and tetraploid Leymus species yielded only one triploid hybrid, T. elongatum x L. salinus ssp. salmonis. Meiotic chromosome associations at metaphase I of pollen mother cells in the triploid hybrid averaged 19.69 univalents, 0.64 bivalents, and 0.01 trivalents per cell. Chromosome pairings in the tetraploid hybrids of L. mollis x L. salinus ssp. salmonis, and the reciprocal cross, indicate that L. mollis and L. salinus ssp. salmonis shae the same genomic constitution. Both the DNA probe and genome analysis results confirm the absence of the J genome in the seven additional Leymus species tested. Meiotic data indicated that tetraploid Leymus species could not have the genome formula N1N1N2N2; thus their genome formulas should remain as NNXX until the source of X is identified.  相似文献   

11.
In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m−2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone.  相似文献   

12.
Why do inherently fast-growing species from productive habitats generally have a higher rate of biomass production in short-term low-nitrogen experiments than slow-growing species from unproductive habitats, whereas the opposite is found in long-term experiments? Is this mainly due to inherent differences in biomass allocation, leaf characteristics or the plants' physiology? To analyse these questions we grew five monocotyledonous species from productive and unproductive habitats in a climate chamber at both high and low nitrogen supply. Nitrate was supplied exponentially, enabling us to compare inherent differences in morphological and physiological traits between the species, without any interference due to differences in the species' ability to take up nutrients. At high nitrogen supply, we found major inherent differences in specific leaf area and nitrogen productivity, i.e. daily biomass increment per unit plant nitrogen, where-as there were only small differences in net assimilation rate, i.e. daily biomass increment per unit leaf area, and biomass partitioning. We propose that the higher specific leaf area and nitrogen productivity of inherently fast-growing species are the key factors explaining their high abundance in productive habitats compared with inherently slow-growing ones. At low nitrogen supply, the net assimilation rate was decreased to a similar extent for all species, compared with that at high nitrogen supply. The nitrogen productivity of the inherentlyfast-growing species decreased with decreasing nitrogen supply, whereas that of the inherently slow-growing species remained constant. There were no inherent differences in nitrogen productivity in this treatment. At this low nitrogen supply, the inherently fast-growing species invested relatively more biomass in their roots that the slow-growing ones did. The inherently fast-growing species still had a higher specific leaf area at low nitrogen supply, but the difference between species was less than that at high nitrogen supply. Based on the present results and our optimization model for carbon and nitrogen allocation (Van der Werf et al. 1993a), we propose that the relatively large investment in root biomass of fast-growing species is the key factor explaining their higher biomass production in short-term experiments. We also propose that in the long run the competitive ability of the slow-growing species will increase due to a lower turnover rate of biomass. It is concluded that the plant's physiology (net assimilation rate and nitrogen productivity), only plays a minor role in the species' competitive ability in low-nitrogen environments.  相似文献   

13.
Observations of experimental dunes made over a period of nine years indicate differences in utilizing three different dune species along the North Carolina coast and in the type of dunes produced by them.Ammophila is superior in ease of establishment and rate of sand accumulation but is shortlived. It produces a gently sloping dune.Uniola is difficult to propagate but is an excellent dune builder and eventually dominates the foredune. Grown alone, it produces a steep dune front.Panicum is an excellent companion plant to bothAmmophila andUniola. It is easy to propagate, relatively free of pests and produces dunes intermediate in shape, betweenAmmophila andUniola. Plantings of mixtures of two or more of these species should greatly improve long-term dune stability compared with either planted alone.Presented at the Seventh International Biometeorological Congress, 17–23 August 1975, College Park, Maryland, USA  相似文献   

14.
Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.  相似文献   

15.
杨莹  王传华  刘艳红 《生态学报》2010,30(22):6082-6090
通过设置4个光照梯度(25%、12%、6%和3%自然光)模拟鄂东南低山丘陵地区落叶阔叶林林下的光环境,研究了2种耐荫性不同的树种幼苗--麻栎(Quercus acutissima)和化香(Platycarya strobilacea)不同光强下的存活率、光合特性、生长和生物量分配,探讨了低光环境中耐荫性不同的树种幼苗维持自身碳平衡的机制和权衡"存活-生长"选择的生活史策略。结果表明:(1)低光下的2个树种幼苗的生长、光合特性和生物量分配具有显著性差异。(2)各个光照梯度下麻栎幼苗都生长良好,存活率保持在35%以上,而化香幼苗遭遇高的死亡率,80d后3%和6%自然光下的幼苗全部死亡;低光环境中麻栎幼苗比化香幼苗具有更大的表观光量子(AQY)和最大净光合效率(Pmax),更低的光补偿点(LCP)和暗呼吸效率(Rd),即耐荫性较强的麻栎幼苗比耐荫性较弱的化香幼苗具有更高的低光碳同化率和碳捕获能力。(3)2个树种幼苗的成活率与RGR呈负相关关系,各个光照梯度下耐荫性较弱的化香幼苗的相对生长率(RGR)显著高于耐荫性较强的麻栎幼苗,而两个树种幼苗的净同化率(NAR)无明显差异。相对于麻栎幼苗较高的根生物量比(RMR),化香幼苗将更多的生物量分配给叶部,因而具有较高的叶生物量比(LMR)、叶面积比(LAR)和比叶面积(SLA)。不同耐荫性的幼苗生长及生物量分配方式的差异是植物"存活-生长"权衡后的结果,耐荫性弱的化香幼苗具有较高的生长潜力和较弱的自我保护能力,而耐荫性强的麻栎幼苗具有更高的低光碳储量,能够维持更好的低光碳平衡,具有竞争优势。  相似文献   

16.
Light is critical in determining plant structure and functioning in dune ecosystems, which are characterised by high incident and reflected radiation. Light variations demand great plasticity of the photosynthetic apparatus. This study assessed the phenotypic plasticity of foredune species by analysing their light response and dark recovery curves measured under field conditions. We also addressed the question how coexisting species, structurally distinct, differed in their photochemical efficiency in response to short-term changes in light. Finally, we examined how the varying intensity of stressors operating along a dune gradient affected responses to light. The species differed in light use strategies but showed similar patterns of the dark recovery. Species differences in photochemistry varied seasonally, with species being winter specialists, summer specialist or generalists. Some aspects of their photochemistry varied significantly along the gradient. Unexpectedly, other traits did not vary as predicted. For example, changes in light efficiency of plants along the gradient were not consistent with assumed directional changes in the severity of stressors. The different light use strategies observed in coexisting species did not conform to the prediction that stressors constrain the range of possible functional designs in harsh environments. However, the species followed very similar patterns of post-illumination recovery, which suggests that evolutionary pressures might be acting to maintain similar recovery mechanisms. Our results indicated that dune gradients might be nondirectional, which determines unpredictable patterns of variation in leaf traits along the dune gradient. Seasonal differences in the relative performance may allow species to coexist where otherwise one species would exclude the other.  相似文献   

17.
Y Wang  Y Wang  L Zhu  B Zhou  X Tang 《PloS one》2012,7(8):e38245
Yellow Sea green tides have occurred in coastal China almost every year from 2007 to 2011. Ulva prolifera (Müller) J. Agardh has been identified as the causative macroalgal species. U. intestinalis, however, has been observed in the bloom areas, co-occurring with U. prolifera, but it has not been found to be causative. The Yellow Sea green tide has shown consistent phases of development that match corresponding environmental changes. U. prolifera, not U. intestinalis, is dominant. Our experimental design was based on these observed phenomena, and the results of our field investigation indicated a close relationship between changes in principal environmental factors (irradiance, temperature, and salinity) and the development of each phase of the bloom. These main environmental factors were simulated to allow estimation and comparison of the physiological responses of U. prolifera and U. intestinalis. Ecophysiological differences were found between these two species. (1) More photosynthetic activity and plasticity were detected in U. prolifera. (2) U. prolifera was found to be more sensitive to dynamic environments, especially harsh and changing environmental conditions. U. intestinalis was found to be more stable, probably due to the higher stress tolerance given by its antioxidant system. (3) Markedly higher nutrient absorption activity was observed in U. prolifera. Comparisons of the ecophysiological traits of these two species in this present study may foster understanding of their natural ecological processes. Specifically, U. prolifera seemed to be more engaged with the ephemeral blooms, while U. intestinalis seemed to be directed toward persistence. This also suggests that the ecological success of U. prolifera may be inextricably linked to its higher capacity for photosynthesis, nutrient absorption, and nutrient assimilation.  相似文献   

18.
Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation rate, soybean has to open its stomata more widely to keep small stomatal resistance, as compared with maize.  相似文献   

19.
入侵植物的生理生态特性对碳积累的影响   总被引:12,自引:3,他引:12  
郑丽  冯玉龙 《生态学报》2005,25(6):1430-1438
随着国际贸易的发展和人们交往的增加以及全球环境的变化,生物种类在全球扩散的机会也大大增加,从而为生物入侵创造了机会。生物入侵不仅给农林牧生产造成损失,而且具有长期的生态学效应。外来种的成功入侵不是其自身某一个特性决定的,而是其特性与新的生境综合作用的结果。外来入侵种生理生态特性的研究对其预测和防治具有重要的意义。目前对入侵种生理生态特性的研究较少。已有的研究表明,与本地种相比入侵种可能通过提高光合能力、资源利用率、表型可塑性、化感作用,以及降低繁殖成本等增加植株碳积累,促进其入侵。但并不是所有的入侵种都同时具有这些特性。生境不同限制性资源不同,入侵机制就不同。成功的入侵种应该能够高效地利用生境中的限制性资源,并且能够较快地调节自身的生理特性以适应波动的资源环境。  相似文献   

20.
Patterns of coastal dune vegetation are closely related with soil conditions controlled by geomorphic forms and processes. This study developed a conceptual model integrating these relationships in a spatially explicit manner. A rectangle of 180 × 280 m containing 126 grids of 20 × 20 m was established in the Sindu coastal dunefield in west Korean Peninsula. Sampling from each grid determined 11 soil properties and identified percent cover of 21 woody and herbaceous plant species. Digital elevation models were generated by topographic survey and used to derive eight topographic parameters. Redundancy analysis and canonical correspondence analysis examined the effect of geomorphic factors on edaphic characteristics and the edaphic influence on spatial distribution of vegetation, respectively. The spatial pattern of soil properties and plant species were inferred from spatial interpolation techniques. In the foredune area, distance from the coastline was a significant indicator of soil nutrients derived from the marine sources by aeolian processes. This favored the dominance by Elymus mollis. Moisture-tolerant species (e.g., Calamagrostis epigeios) had high cover in the acidic soils of dune slacks, which covaried with wetness index, an indirect measure of the depth to the freshwater table. Vegetation–soil interactions (e.g., nitrogen fixation by legumes) were important in secondary dune areas, with topographic effects less significant. Vegetation, soil, and geomorphic factors are closely connected in a causal chain across a whole dune area. Our model thus addresses the importance of integrating foredune, dune slack, and secondary dune into one continuous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号