首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and 1 was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed.  相似文献   

2.
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 °C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 °C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C20) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).  相似文献   

3.
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes C-terminal lipidation of >100 proteins, including many GTP- binding regulatory proteins. We present the first structural information for mammalian GGTase-I, including a series of substrate and product complexes that delineate the path of the chemical reaction. These structures reveal that all protein prenyltransferases share a common reaction mechanism and identify specific residues that play a dominant role in determining prenyl group specificity. This hypothesis was confirmed by converting farnesyltransferase (15-C prenyl substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation. GGTase-I discriminates against farnesyl diphosphate (FPP) at the product turnover step through the inability of a 15-C FPP to displace the 20-C prenyl-peptide product. Understanding these key features of specificity is expected to contribute to optimization of anti-cancer and anti-parasite drugs.  相似文献   

4.
Lipid modification of eukaryotic proteins by protein prenyltransferases is required for critical signaling pathways, cell cycle progression, cytoskeleton remodeling, induction of apoptosis and vesicular trafficking. This review analyzes the influence of distinct states of sequential posttranslational processing that can be obtained after single or double prenylation, reversible palmitoylation, proteolytic cleavage of the C-terminus and possible reversible carboxymethylation. This series of modifications, as well as the exact length of the prenyl anchor, are determinants in protein-membrane and specific protein-protein interactions of protein prenyltransferase substrates. Furthermore, the occurrence and distribution of pseudogenes of protein prenyltransferase subunits are discussed. Besides being developed as anti-cancer agents, prenyltransferase inhibitors are effective against an increasing number of parasitic diseases. Extensive screens for protein prenyltransferases in genomic data of fungal and protozoan pathogens unveil a series of new pharmacologic targets for prenyltransferase inhibition, including the parasites Brugia malayi, Onchocerca volvulus, Aspergillus nidulans, Pneumocystis carinii, Entamoeba histolytica, Strongyloides stercoralis, Trichinella spiralis and Cryptosporidium parvum.  相似文献   

5.
Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone, and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays either use radiolabeled substrates and are discontinuous or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format, and that it can reproduce IC(50) values for several previously reported FDPS inhibitors. This new method offers a simple, safe, and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target.  相似文献   

6.
7.
Diphosphate-modified substrates for prenyltransferase were synthesized and examined as substrates for the prenyltransferase reaction. They were dimethylallyl methylenediphosphonate, geranyl methylenediphosphonate, geranyl imidodiphosphate, geranyl phosphosulfate, farnesyl methylenediphosphonate, farnesyl imidodiphosphate, and farnesyl phosphosulfate. All of them except dimethylallyl methylenediphosphonate were accepted as substrates by solanesyl diphosphate synthase to give solanesyl diphosphate and the former four analogs were also accepted as substrates by farnesyl diphosphate synthase to give farnesyl diphosphate. The Km values of both enzymes for the methylenediphosphonate and imidodiphosphate analogs were comparable to those of the corresponding diphosphate substrates, but the phosphosulfate analogs showed much greater Km values than the diphosphate substrates. On the other hand, the Vmax values for these artificial substrates were all smaller than those for the corresponding natural substrates. Kinetic experiments with the analogs showed that the ionization-condensation-elimination mechanism proposed for the farnesyl diphosphate synthase reaction holds also for the solanesyl diphosphate synthase reaction and that the diphosphoryl structure, capable of chelating with divalent cations, is important topologically and kinetically rather than thermodynamically.  相似文献   

8.
In contrast to the reactivity of geranyl methylene-diphosphonate in the reaction catalyzed by farnesyl diphosphate synthase, that of isopentenyl methylenediphosphonate showed an optimum at a more acidic pH than that of isopentenyl diphosphate, and it was inhibited by magnesium ions under certain conditions. These facts suggest that isopentenyl diphosphate is engaged in the enzyme reaction in the form of metal-free substrate contrary to the allylic substrate, which reacts in the form of metal-complexed substrate. Thus the diphosphate moieties of allylic and homoallylic substrates have different roles in the prenyltransferase reaction.  相似文献   

9.
Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (?)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.  相似文献   

10.
The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K(m) values of 5-dimethylallyltryptophan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k(cat)) at 1.1 s(-1) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for L-tryptophan at 25,588 s(-1)·M(-1) and for other 11 simple indole derivatives up to 1538 s(-1)·M(-1) provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.  相似文献   

11.
An enzyme capable of specifically modifying, with a geranylgeranyl isoprenoid, candidate proteins containing a consensus prenylation sequence ending in leucine has been purified from bovine brain. This protein geranylgeranyltransferase (PGGT), isolated using affinity chromatography on an immobilized peptide column, contains two subunits with molecular masses of 48 and 43 kDa, designated alpha and beta, respectively. An antiserum raised to the alpha subunit of the related enzyme, protein farnesyltransferase (PFT), also recognizes this chromatographically identical alpha-subunit of the PGGT by immunoblot analysis. The PGGT and PFT enzymes from bovine brain are shown to be dependent on both Mg2+ and Zn2+ for optimal activity. Demonstration of the Zn2+ dependence of the enzymes requires prolonged incubation or purification in the presence of a chelating agent; we therefore propose that these enzymes be placed into the category of metalloenzymes. Under optimal assay conditions, these enzymes show high specificity toward their prenyl diphosphate substrates, with only a weak competition observed with farnesyl diphosphate in the PGGT reaction or geranylgeranyl diphosphate in the PFT reaction. The two enzymes are differentially sensitive to several detergents tested to determine suitable ones for product stabilization in the reactions. These results confirm previous predictions on the subunit structure of the PGGT and provide an avenue to initiating a molecular analysis of the geranylgeranyl modification of many mammalian proteins.  相似文献   

12.
A geraniol-synthase gene from Cinnamomum tenuipilum   总被引:2,自引:0,他引:2  
Yang T  Li J  Wang HX  Zeng Y 《Phytochemistry》2005,66(3):285-293
Geraniol may accumulate up to 86-98% of the leaf essential oils in geraniol chemotypes of the evergreen camphor tree Cinnamomum tenuipilum. A similarity-based cloning strategy yielded a cDNA clone that appeared to encode a terpene synthase and which could be phylogenetically grouped within the angiosperm monoterpene synthase/subfamily. After its expression in Escherichia coli and enzyme assay with prenyl diphosphates as substrates, the enzyme encoded by the putative C. tenuipilum monoterpene synthase gene was shown to specifically convert geranyl diphosphate to geraniol as a single product by GC-MS analysis. Biochemical characterization of the partially purified recombinant protein revealed a strong dependency for Mg2+ and Mn2+, and an apparent Michaelis constant of 55.8 microM for geranyl diphosphate. Thus, a new member of the monoterpene synthase family was identified and designated as CtGES. The genome contains a single copy of CtGES gene. Expression of CtGES was exclusively observed in the geraniol chemotype of C. tenuipilum. Furthermore, in situ hybridization analysis demonstrated that CtGES mRNA was localized in the oil cells of the leaves.  相似文献   

13.
Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.  相似文献   

14.
Combined evidence obtained from the measurements of pyrophosphate hydrolysis and synthesis, oxygen exchange between phosphate and water, enzyme-bound pyrophosphate formation and Mg2+ binding enabled us to deduce the overall scheme of catalysis by Escherichia coli inorganic pyrophosphatase in the presence of Mg2+. We determined the equilibrium constants for Mg2+ binding to various enzyme species and forward and reverse rate constants for the four steps of the catalytic reaction, namely, binding/release of PPi, hydrolysis/synthesis of PPi and successive binding/release of two Pi molecules. Catalysis by the E. coli enzyme in both directions, in contrast to baker's yeast pyrophosphatase, occurs via a single pathway, which requires the binding of Mg2+ to the sites of four types. Three of them can be filled in the absence of the substrates, and the affinity of one of them to Mg2+ is increased by two orders of magnitude in the enzyme-substrate complexes. The distribution of 18O-labelled phosphate isotopomers during the exchange indicated that hydrolysis of pyrophosphate in the active site is appreciably reversible. The equilibrium constant for this process estimated from direct measurements is 5.0. The ratio of the maximal velocities of pyrophosphate hydrolysis and synthesis is 69. The rate of the synthesis is almost entirely determined by the rate of the release of pyrophosphate from the enzyme. In the hydrolytic reaction, enzyme-bound pyrophosphate hydrolysis and successive release of two phosphate molecules proceed with nearly equal rate constants.  相似文献   

15.
The core structure of membrane lipids of archaea have some unique properties that permit archaea to be distinguished from the others, i.e. bacteria and eukaryotes. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase, which catalyzes the transfer of a geranylgeranyl group from geranylgeranyl diphosphate to (S)-3-O-geranylgeranylglyceryl phosphate, is involved in the biosynthesis of archaeal membrane lipids. Enzymes of the UbiA prenyltransferase family are known to catalyze the transfer of a prenyl group to various acceptors with hydrophobic ring structures in the biosynthesis of respiratory quinones, hemes, chlorophylls, vitamin E, and shikonin. The thermoacidophilic archaeon Sulfolobus solfataricus was found to encode three homologues of UbiA prenyltransferase in its genome. One of the homologues encoded by SSO0583 was expressed in Escherichia coli, purified, and characterized. Radio-assay and mass spectrometry analysis data indicated that the enzyme specifically catalyzes the biosynthesis of (S)-2,3-di-O-geranylgeranylglyceryl phosphate. The fact that the orthologues of the enzyme are encoded in almost all archaeal genomes clearly indicates the importance of their functions. A phylogenetic tree constructed using the amino acid sequences of some typical members of the UbiA prenyltransferase family and their homologues from S. solfataricus suggests that the two other S. solfataricus homologues, excluding the (S)-2,3-di-O-geranylgeranylglyceryl phosphate synthase, are involved in the production of respiratory quinone and heme, respectively. We propose here that archaeal prenyltransferases involved in membrane lipid biosynthesis might be prototypes of the protein family and that archaea might have played an important role in the molecular evolution of prenyltransferases.  相似文献   

16.
Y W Zhang  X Y Li  H Sugawara  T Koyama 《Biochemistry》1999,38(44):14638-14643
Heptaprenyl diphosphate synthase of Bacillus subtilis is composed of two dissociable heteromeric subunits, component I and component II. Component II has highly conserved regions typical of (E)-prenyl diphosphate synthases, but it shows no prenyltransferase activity alone unless it is combined with component I. Alignment of amino acid sequences for component I and the corresponding subunits of Bacillus stearothermophilus heptaprenyl diphosphate synthase and Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase shows three regions of high similarity. To elucidate the role of these regions of component I during catalysis, 13 of the conserved amino acid residues in these regions were selected for substitution by site-directed mutagenesis. Kinetic studies indicated that substitutions of Val-93 with Gly, Leu-94 with Ser, and Tyr-104 with Ser resulted in 3-10-fold increases of K(m) values for the allylic substrate and 5-15-fold decreases of V(max) values compared to those of the wild-type enzyme. The three mutated enzymes, V93G, L94S, and Y104S, showed little binding affinity to the allylic substrate in the membrane filter assay. Furthermore, product analyses showed that D97A yielded shorter chain prenyl diphosphates as the main product, while Y103S gave the final product with a C(40) prenyl chain length. These results suggest that some of the conserved residues in region B of component I are involved in the binding of allylic substrate as well as determining the chain length of the enzymatic reaction product.  相似文献   

17.
Protein farnesyl transferase (PFTase) catalyzes the reaction between farnesyl diphosphate and a protein substrate to form a thioether-linked prenylated protein. The fact that many prenylated proteins are involved in signaling processes has generated considerable interest in protein prenyl transferases as possible anticancer targets. While considerable progress has been made in understanding how prenyl transferases distinguish between related target proteins, the rules for isoprenoid discrimination by these enzymes are less well understood. To clarify how PFTase discriminates between FPP and larger prenyl diphosphates, we have examined the interactions between the enzyme and several isoprenoid analogues, GGPP, and the farnesylated peptide product using a combination of biochemical and structural methods. Two photoactive isoprenoid analogues were shown to inhibit yeast PFTase with K(I) values as low as 45 nM. Crystallographic analysis of one of these analogues bound to PFTase reveals that the diphosphate moiety and the two isoprene units bind in the same positions occupied by the corresponding atoms in FPP when bound to PFTase. However, the benzophenone group protrudes into the acceptor protein binding site and prevents the binding of the second (protein) substrate. Crystallographic analysis of geranylgeranyl diphosphate bound to PFTase shows that the terminal two isoprene units and diphosphate group of the molecule map to the corresponding atoms in FPP; however, the first and second isoprene units bulge away from the acceptor protein binding site. Comparison of the GGPP binding mode with the binding of the farnesylated peptide product suggests that the bulkier isoprenoid cannot rearrange to convert to product without unfavorable steric interactions with the acceptor protein. Taken together, these data do not support the "molecular ruler hypotheses". Instead, we propose a "second site exclusion model" in which PFTase binds larger isoprenoids in a fashion that prevents the subsequent productive binding of the acceptor protein or its conversion to product.  相似文献   

18.
Coumarins, a large group of polyphenols, play important roles in the defense mechanisms of plants, and they also exhibit various biological activities beneficial to human health, often enhanced by prenylation. Despite the high abundance of prenylated coumarins in citrus fruits, there has been no report on coumarin-specific prenyltransferase activity in citrus. In this study, we detected both O- and C-prenyltransferase activities of coumarin substrates in a microsome fraction prepared from lemon (Citrus limon) peel, where large amounts of prenylated coumarins accumulate. Bergaptol was the most preferred substrate out of various coumarin derivatives tested, and geranyl diphosphate (GPP) was accepted exclusively as prenyl donor substrate. Further enzymatic characterization of bergaptol 5-O-geranyltransferase activity revealed its unique properties: apparent K(m) values for GPP (9 μM) and bergaptol (140 μM) and a broad divalent cation requirement. These findings provide information towards the discovery of a yet unidentified coumarin-specific prenyltransferase gene.  相似文献   

19.
The nature of the thiamine diphosphate binding proteins from rat liver hyaloplasm was studied. When [14C]thiamine was used as a marker, a [14C]thiamine diphosphate-containing electrophoretically homogeneous protein preparation was isolated from the liver soluble fraction and classified as transketolase. No other non-enzymatic proteins which bind thiamine diphosphate and can serve as substrates in the reaction of thiamine diphosphate synthesis in the hyaloplasm were found. It was shown that the phosphate group is transferred by rat liver thiamine diphosphate kinase to the free (but not to the protein-bound) thiamine diphosphate as it was believed earlier.  相似文献   

20.
Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina . The cDNA of P. bellina GDP synthase ( PbGDPS ) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg2+ and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号