共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts 总被引:3,自引:0,他引:3
Banfi C Brioschi M Wait R Begum S Gianazza E Fratto P Polvani G Vitali E Parolari A Mussoni L Tremoli E 《Proteomics》2006,6(6):1976-1988
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease. 相似文献
2.
Ramírez-Sánchez I Mendoza-Lorenzo P Zentella-Dehesa A Méndez-Bolaina E Lara-Padilla E Ceballos-Reyes G Canto P Palma-Flores C Coral-Vázquez RM 《Biochimie》2012,94(9):1884-1890
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity. 相似文献
3.
4.
Proteomic profiling of endothelial cells in human lung cancer 总被引:1,自引:0,他引:1
Park HJ Kim BG Lee SJ Heo SH Kim JY Kwon TH Lee EB Ryoo HM Cho JY 《Journal of proteome research》2008,7(3):1138-1150
Genomic and proteomic analysis of normal and diseased tissues have yielded an abundance of molecular information for diagnostic and potential therapeutic targets. Changing the target of analysis from poorly accessible cells within tissues to easily accessible vascular endothelium has theoretical advantages in tissue-specific targeting. In this study, we sought to map a large-scale proteome of microvascular endothelium in human non-small cell lung cancer (NSCLC) and normal lung tissues, and identify lung cancer-related endothelial cell (EC)-selective proteins. Endothelial cells were isolated within NSCLC tissues and adjacent-normal lung tissue of lung cancer patients by using CD31-immunomagnetic beads. The complex proteins from the ECs were separated by one-dimensional gel electrophoresis, and the proteins in each gel band were digested by trypsin. Peptides were separated by online reverse-phase liquid-chromatography and analyzed by electrospray ionization (ESI) ion trap tandem mass spectrometry. Approximately 600-1000 proteins were identified in each individual sample. Five patient cases of paired individual data, extracted from the protein identification data sets of both normal- and cancer-derived ECs, were analyzed by subtractive proteomics. An average of 300 proteins was specifically identified from each lung cancer-derived EC isolate, compared to normal lung-derived ECs. With the use of several comparative analyses, we identified among those 300 proteins, 16 common candidate proteins that were detected in at least 3 of 5 cases specific to lung cancer-derived ECs. Proteins selectively identified in cancer-derived ECs, including coatomer protein complex, subunit gamma (COPG), and peroxiredoxin 4 (PRDX4), were validated by Western blot analysis. In an additional experiment in which 16 cancer samples were analyzed by immunohistochemistry, PRDX4, thymopoietin (TMPO), and COPG were confirmed to be abundantly expressed in lung cancer-derived ECs and in cancerous lung cells. Further ongoing analysis of these 16 candidate proteins will determine their potential applicability to NSCLC-specific diagnosis and therapeutics. 相似文献
5.
Kim HS Choi DY Yun SJ Choi SM Kang JW Jung JW Hwang D Kim KP Kim DW 《Journal of proteome research》2012,11(2):839-849
Mesenchymal stem cells (MSCs) have emerged as a promising means for treating degenerative or incurable diseases. Recent studies have shown that microvesicles (MVs) from MSCs (MSC-MVs) contribute to recovery of damaged tissues in animal disease models. Here, we profiled the MSC-MV proteome to investigate their therapeutic effects. LC-MS/MS analysis of MSC-MVs identified 730 MV proteins. The MSC-MV proteome included five positive and two variable known markers of MSCs, but no negative marker, as well as 43 surface receptors and signaling molecules controlling self-renewal and differentiation of MSCs. Functional enrichment analysis showed that cellular processes represented by the MSC-MV proteins include cell proliferation, adhesion, migration, and morphogenesis. Integration of MSC's self-renewal and differentiation-related genes and the proteome of MSC-conditioned media (MSC-CM) with the MSC-MV proteome revealed potential MV protein candidates that can be associated with the therapeutic effects of MSC-MVs: (1) surface receptors (PDGFRB, EGFR, and PLAUR); (2) signaling molecules (RRAS/NRAS, MAPK1, GNA13/GNG12, CDC42, and VAV2); (3) cell adhesion (FN1, EZR, IQGAP1, CD47, integrins, and LGALS1/LGALS3); and (4) MSC-associated antigens (CD9, CD63, CD81, CD109, CD151, CD248, and CD276). Therefore, the MSC-MV proteome provides a comprehensive basis for understanding the potential of MSC-MVs to affect tissue repair and regeneration. 相似文献
6.
Choi DS Lee JM Park GW Lim HW Bang JY Kim YK Kwon KH Kwon HJ Kim KP Gho YS 《Journal of proteome research》2007,6(12):4646-4655
Microvesicles (MV) are membrane vesicles secreted from the plasma and endosomal membrane compartment by various cell types such as hematopoietic, epithelial, and tumor cells. Actively growing tumor cells shed MV, and the rate of shedding increases in malignant tumors. Although recent progress in this area has revealed that tumor-derived MV play multiple roles in tumor growth and metastasis via immune escape, tumor invasion, and angiogenesis, the mechanism of vesicle formation and the biological roles of tumor-derived MV are not understood. Here, we report the first global proteomic analysis of highly purified MV from human colorectal cancer cells. Using 1D SDS gel electrophoresis and nano-LC-MS/MS analyses, we identified a total of 547 microvesicular proteins from three independent experiments with high confidence; 416 proteins were identified at least in two trials, including 181 as yet unreported proteins. We identified 49 proteins involved in the biogenesis of MV, including annexins, ADP-ribosylation factors, and Rab proteins. We also identified 28 proteins that may function in tumorigenesis via promotion of migration, invasion, and growth of tumor cells, immune modulation, metastasis, and angiogenesis. Taken together with previously reported results, our observations suggest that tumor-derived MV may act as communicasomes, that is, extracellular organelles that play diverse roles in intercellular communication. This information will help elucidate the biogenesis and functions of tumor-derived MV, and aid in the development of effective vaccines for various cancers, including colorectal cancer. 相似文献
7.
Background
Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells.Results
Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60) were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase) were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control) ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test.Conclusion
The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans. 相似文献8.
'Alessio AD Esposito B Giampietri C Ziparo E Pober JS Filippini A 《Journal of cellular and molecular medicine》2012,16(3):627-636
Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine. 相似文献
9.
The endothelium is a single layer of cells lining the inside face of all blood vessels. It constitutes a major metabolic organ which is critically involved in the generation and the regulation of multiple physiological and pathological processes such as coagulation, hemostasis, inflammation, atherosclerosis, angiogenesis and cancerous metastasis dissemination. In order to increase our knowledge about the protein content and the main biological pathways of human vascular endothelial cells, we have undertaken the proteomic analysis of the most explored present endothelial cell model, i.e. primocultures of human umbilical vein endothelial cells (HUVECs). Using low levels of protein loads (~ 30 nug), the association of two-dimensional electrophoresis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry, liquid chromatography-tandem mass spectrometry and database interrogations allowed us to identify 53 proteins of suspected endothelial origin in quiescent HUVECs. Beside cytoskeletal proteins such as actin, tubulin, tropomyosin and vimentin, we identified various proteins more especially implicated in cellular motility and plasticity (e.g. cofilin, F-actin capping protein and prefoldin), in regulation of apoptosis and senescence (protease inhibitor 9, glucose related proteins, heat shock proteins, thioredoxin peroxidase, nucleophosmin) as well as other proteins implicated in coagulation (annexin V, high mobility group protein), antigen presentation (valosin containing protein and ubiquitin carboxyl terminal hydrolase isozyme L1) and enzymatic capabilities (glutathione-S-transferase, protein disulfide isomerases, lactate deshydrogenase). The presented annotated 2-D maps of HUVECs will be soon available on the web at http://www. huvec.com. 相似文献
10.
Background
Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution.Results
A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.Conclusions
The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. 相似文献11.
12.
Proteomic analysis of plasma membrane lipid rafts of HL-60 cells 总被引:1,自引:0,他引:1
Yanagida M Nakayama H Yoshizaki F Fujimura T Takamori K Ogawa H Iwabuchi K 《Proteomics》2007,7(14):2398-2409
Neutrophils acquire phagocytic activity as they differentiate. Recently, plasma membrane lipid rafts have been shown to play important roles in the process of phagocytosis in neutrophils. To characterize the proteins involved in phagocytosis and to elucidate the process by which they acquire phagocytic activity, we investigated by nano-LC-MS/MS analysis the changes in protein composition of plasma membrane lipid rafts during DMSO-induced differentiation of the human leukemia cell line HL-60 cells into neutrophilic lineage. Based on the spectrum counts of 147 proteins identified, 25 proteins were upregulated and 49 were downregulated by DMSO treatment. CD11b/CD18 subunits of beta2-integrin Mac-1, CD35, and GPI-80, which are known to be upregulated during differentiation, were dominantly detected in the lipid rafts of DMSO-treated cells. Many known membrane proteins, G proteins, and cytoskeletal proteins were also detected and they showed characteristic distributions. Absolute quantification of nine proteins in the lipid rafts using internal standard peptides labeled with stable isotopes showed that the amount of protein almost corresponded to the results obtained by spectrum count. Identified proteins, expression of which was altered by DMSO treatment, are expected to be candidate proteins involved in differentiation and functions of neutrophils. 相似文献
13.
Reactive oxygen species (ROS) have been traditionally regarded as toxic by-products of aerobic metabolism. However, ROS also act as intracellular signaling molecules and can mediate phenotypes in vascular endothelial cells, which may be physiological or pathological in nature. To clarify the molecular mechanisms of ROS signaling, we examined hydrogen peroxide (H(2)O(2))-responsive proteins in cultured human dermal microvascular endothelial cells (HMVEC) using proteomic tools. Protein expression in HMVEC was studied after they had been exposed to low- and high-levels of H(2)O(2) for various times, and intracellular ROS production was examined by flow cytometer and UV spectrophotometer. Proteins obtained from dose- and time-dependent series were separated by two-dimensional gel electrophoresis and tentatively identified by matrix-assisted laser desorption-time of flight mass spectrometry, by matching the tryptic mass maps obtained with entries in the NCBI and Swiss-Prot protein sequence database. At least 163 proteins were changed by H(2)O(2), and 60 proteins were identified. Oxidative stress triggered dramatic change in the expression of proteins in primary microvessel endothelial cells, and their mapping to cellular process provided a view of the ubiquitous cellular changes elicited by H(2)O(2). These results could provide a framework for the understanding of the mechanisms of cellular redox homeostasis and H(2)O(2) metabolism in microendothelium environment in various biological processes as well as pathological conditions. 相似文献
14.
Gu MX Fu Y Sun XL Ding YZ Li CH Pang W Pan S Zhu Y 《Journal of proteome research》2012,11(4):2365-2373
As inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, statins have pleiotropic vascular-protective effects, such as anti-inflammatory and antioxidative effects. We investigated the short-term beneficial effects of statins on modulating the translocation of lipid-raft-related proteins in endothelial cells (ECs). Human umbilical vein ECs were treated with atorvastatin for 30 min or 2 h; lipid-raft proteins were isolated and examined by quantitative proteome assay. Functional classification of identified proteins in lipid rafts revealed upregulated antioxidative proteins; downregulated proteins were associated with inflammation and cell adhesion. Among proteins verified by Western blot analysis, endoplasmic reticulum protein 46 (ERp46) showed increased level in lipid rafts with atorvastatin. Further, atorvastatin inhibited the activation of membrane-bound NADPH oxidase in both untreated and angiotensin II-treated ECs, as shown by reduced reactive oxygen species production. Co-immunoprecipitation and immunofluorescence experiments revealed that atorvastatin increased the association of ERp46 and Nox2, an NADPH oxidase isoform, in lipid rafts, thereby inhibiting Nox2 assembly with its regulatory subunits, such as p47phox and p67phox. Our results reveal a novel antioxidative role of atorvastatin by promoting the membrane translocation of ERp46 and its binding with Nox2 to inhibit Nox2 activity in ECs, which may offer another insight into the pleiotropic functions of statins. 相似文献
15.
Bailey RL Herbert JM Khan K Heath VL Bicknell R Tomlinson MG 《Biochemical Society transactions》2011,39(6):1667-1673
Tetraspanins function as organizers of the cell surface by recruiting specific partner proteins into tetraspanin-enriched microdomains, which regulate processes such as cell adhesion, signalling and intracellular trafficking. Endothelial cells appear to express at least 23 of the 33 human tetraspanins, and a number of recent studies have demonstrated their importance in endothelial cell biology. Tetraspanin CD151 is essential for pathological angiogenesis, which may in part be due to regulation of its main partner proteins, the laminin-binding integrins α3β1, α6β1 and α6β4. CD9 and CD151 are essential for leucocyte recruitment during an inflammatory response, through the formation of pre-assembled nano-platforms containing the adhesion molecules ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), which ultimately coalesce to form docking structures around captured leucocytes. Tetraspanin CD63 also facilitates leucocyte capture by promoting clustering of the adhesion molecule P-selectin. Finally, Tspan12 is required for blood vessel development in the eye, through regulation of Norrin-induced Frizzled-4 signalling, such that Tspan12 mutations can lead to human disease. Future studies on these and other endothelial tetraspanins are likely to provide further novel insights into angiogenesis and inflammation. 相似文献
16.
Poston CN Duong E Cao Y Bazemore-Walker CR 《Biochemical and biophysical research communications》2011,(2):355-360
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca2+ signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, ∼20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca2+ signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains. 相似文献
17.
Petrak J Myslivcova D Man P Cmejla R Cmejlova J Vyoral D 《American journal of physiology. Gastrointestinal and liver physiology》2006,290(5):G1059-G1066
Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress. 相似文献
18.
Sri Lilidjanti Widjaja Harsono Salimo Indah Yulianto 《Saudi Journal of Biological Sciences》2021,28(8):4399-4407
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis. 相似文献
19.
Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44− cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44− using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs. 相似文献
20.
Isotope-coded affinity tags (cICAT) coupled with mass spectrometric analysis is one of the leading technologies for quantitative proteomic profiling and protein quantification. We performed proteomic analysis of bovine aortic endothelial cells (BAEC) in response to laminar shear stress using cICAT labeling coupled with LC-MS/MS. Protein expressions in BAEC under 15 dynes/cm2 of shear stress for 10 min, 3 h, and 6 h were compared with matched stationary controls. Analysis of each sample produced 1800-2400 proteins at >or=75% confidence level. We found 142, 213, and 186 candidate proteins that were up- or down-regulated by at least two-fold after 10 min, 3 h, and 6 h of shear stress, respectively. Some of these proteins have known cellular functions and they encompass many signaling pathways. The signaling pathways that respond to shear stress include those of integrins, G-protein-coupled receptors, glutamate receptors, PI3K/AKT, apoptosis, Notch and cAMP-mediated signaling pathways. The validity of the mass spectrometric analysis was also confirmed by Western blot and confocal immunofluorescence microscopy. The present quantitative proteomic analysis suggests novel potential regulatory mechanisms in vascular endothelial cells in response to shear stress. These results provide preliminary footprints for further studies on the signaling mechanisms induced by shear stress. 相似文献