首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary Piona exigua Viets is a predaceous freshwater mite that can potentially affect the population densities of its cladoceran prey. As part of a study of the effect of Piona exigua on its prey populations we measured the effects of water temperature and prey density on the lifespan, age at first reproduction and per capita egg production of adult female mites. Mites were raised in the laboratory at five prey (Ceriodaphnia, Daphnia) densities (5, 15, 30, 60, 120/l) at 15° C and at four temperatures (10, 15, 18, 22° C) at c. 60 prey/l. In response to increased food level, mites increased the number of eggs laid to reach a maximum at 60 prey/l, the rate at which they were laid increased and the pre-reproductive period was shorter. Low temperatures prolonged the pre-reproductive period. At temperatures above 10° C, food level and temperature had more influence on the timing of reproductive events (growth rate, oviposition rate, age at first reproduction) than on the size of females at first reproduction. When temperatures exceed 10° C and food levels exceed 5 prey/l the major scope for reproductive plasticity in Piona lies in the timing and duration of egg production.  相似文献   

2.
In ectotherms, environmental temperature is the most prominent abiotic factor that modulates life-history traits. We explored the influence of environmental temperature on reproduction in the Madagascar ground gecko (Paroedura picta) by measuring reproductive traits of females at constant temperatures (24, 27, 30 °C). Females of this species lay clutches of one or two eggs within short intervals. For each female, we measured egg mass for the first five clutches. For one clutch, we also measured the energetic content of eggs via bomb calorimetry. Temperature positively influenced the rate of egg production, but females at 30 °C laid smaller eggs than did females at either 24 or 27 °C. Dry mass of eggs scaled allometrically with wet mass, but this relationship was similar among thermal treatments. Females at all temperatures produced eggs with similar energy densities. Females at 24 °C allocated less energy per time unit (≈8 mW) to reproduction than did females from higher temperatures (≈12 mW). However, females at either 24 or 27 °C allocated significantly more energy per egg than did females at 30 °C. Our results demonstrate that a complex thermal sensitivity of reproductive rate can emerge from distinct thermal sensitivities of egg size, egg composition and clutch frequency.  相似文献   

3.
Growth,reproduction and longevity in nematodes from sewage treatment plants   总被引:1,自引:0,他引:1  
The growth, reproduction and longevity of Diplogasteritus nudicapitatus, Paroigolaimella bernensis and Rhabditis curvicaudata were investigated under conditions of excess food within the temperature range 5°C–20°C. In all three species growth rate increased with temperature, and in D. nudicapitatus and R. curvicaudata the adult size attained varied significantly with temperature. P. bernensis did not reproduce at 5°C, but showed a progressive increase in reproductive output at higher temperatures. D. nudicaitatus showed increased egg production as temperature increased while R. curvicaudata had maximum egg output at 10°C. Longevity is temperature dependent, decreasing with higher temperatures. Virgin females survived for longer than reproducing females. The data indicate that while D. nudicapitatus and P. bernensis are thermophilic species, R. curvicaudata is adapted to lower temperatures.  相似文献   

4.
Temperature affects many life history parameters in poikilotherms. Temperature clearly affects development time and fecundity, which affect the intrinsic rate of increase. In haplodiploid mites, ambient temperature may also affect offspring sex ratio which, in turn, affects intrinsic rate of increase. The combined effect of all these processes determines the fitness of individual females. However, sex ratio also affects mating structure and, potentially, rate of local adaption. We investigated the direct effect of temperature variation on sex ratio, development time, and fecundity in the twospotted spider mite (Tetyranychus urticae), and calculated the effect of their interaction on mite intrinsic rate of increase. We conducted experiments at 2 temperatures and designed the experiment to separate pre-adult and adult sensitivity to temperature variation. Mites were reared from eggs to adult ecdysis at either 22°C or 32°C. Upon emergence as adults, these 2 groups were each split between 22°C and 32°C and allowed to oviposit. Not surprisingly, development from egg to adult was accelerated when mites were exposed to the higher temperature during offspring development, regardless of the temperature experienced by the mother during her development. Fecundity and the proportion of female offspring were affected by temperature only when mothers were exposed during both development and oviposition. About 12 offspring were gained and female bias was increased by 26% when the mother's development occurred at 22°C, whereas oviposition at 22°C added only 6 more offspring and increased female bias by only 7%. There was no correlation between sex ratio and fecundity; both were related to temperature but not to each other. Furthermore, development time, not fecundity or sex ratio, appeared to the main factor affecting the intrinsic rate of increase. Our results support other evidence that sex ratio varies independently of development time and fecundity.  相似文献   

5.
The life history of New Zealand flower thrips (Thrips obscuratus (Crawford), Thysanoptera: Thripidae) was studied using a simple laboratory rearing method. The effects of temperature and diet on oviposition rate and development time were examined. Oviposition rate increased with increasing temperature between 10°C and 25°C. Development time for individual instars and for total development decreased with increasing temperature between 10°C and 27°C. Total development time ranged from 50 days at 10°C (female) to 10 days at 27°C (male). The relationship between temperature and development rate was expressed as a straight line such that lower thresholds of development of between 4.2°C and 6.3°C were established for life stages. Adult lifespan increased with decreasing temperature between 10°C and 25°C and females lived longer than males. At 10°C and 25°C females lived for an average of 34 and 3 weeks respectively. Thrips supplied with pollen exhibited highest and sustained levels of egg production in comparison to other diets. Larval mortality was lowest and development time fastest on diets of pollen and sucrose or fruit juice in comparison to other plant tissues. Larval development time was similar on four species of pollen.  相似文献   

6.
The effects of different temperatures and relative humidities (RHs) were tested on various reproductive parameters of Ornithodoros turicata, an argasid tick that inhabits gopher tortoise burrows in Florida, USA. The pre-oviposition, oviposition and incubation periods of the ticks decreased as temperature increased. These periods were also affected by the RH. The number of eggs oviposited was affected significantly by the combined effect of temperature and RH. Fewer eggs were laid by ticks in the 24°C regimes and the 27°C/95%RH regime compared to those in the other temperature/RH groups. There was an inverse relationship between the number of eggs oviposited and the percentage of hatched larvae that was correlated with the temperature and RH. Ticks reared at 27°C/90%RH and 30°C/90%RH laid more eggs than those reared in the other combinations of temperature and humidity but fewer larvae hatched from these eggs. The reproductive fitness index (RFI) values were highest in females held in the 24°C groups and the 30°C/95%RH group, although significantly more larvae hatched at the lower temperatures. The optimum reproductive conditions for O. turicata under laboratory conditions appear to be 24°C and 90–95%RH. While mating occurred at all temperatures, none of the females laid eggs at 22°C. The ticks may move preferentially to low temperatures when not feeding to remain above the critical equilibrium humidity and/or below the critical metabolic level necessary for prolonged survival. However, most female ticks oviposited after 45 days when moved to 27°C/95%RH. Ornithodoros turicata females may have a limited capability to delay oviposition until an optimal microenvironment for egg deposition can be located in the burrow.  相似文献   

7.
N. Uygun  R. Atlihan 《BioControl》2000,45(4):453-462
Development and fecundity of Scymnus levaillanti(Mulsant) were recorded at fiveconstant temperatures ranging from 15 to 35 ± 1 °C in 5 °C increments, 60 ± 5% RHand 16 h of artificial light (5000 Lux). Developmentaltime (egg to adult) of S. levaillantisignificantly decreased with increasing temperatures,ranging from 63.9 days at 15 °C to 11.1 days at35 °C. Development from egg to adult required305.2 DD above a developmental threshold estimated as11.7 °C. Oviposition periods lasted 86.5, 76.1,47.2, and 31.5 days at 20, 25, 30 and 35 °C,respectively. No eggs were deposited at 15 °C.Higher temperatures resulted in shorter generationtimes (TO) and in decreased net reproductiverates (RO) of the coccinellid. S.levaillanti kept at 30 °C produced 0.151females/female/day, the highest per capita rate ofpopulation growth (rm). The `functional response'of larvae and adults of S. levaillanti matcheswell that described by Holling (1959) as Type 2.Daily number of eggs deposited by females increased toa plateau with increasing prey density. Resultsobtained here provide information about the biology ofS. levaillanti, and its feeding capacityindicates that it may act as an important control agent.  相似文献   

8.
The objective of our study was to assess thepotential of the egg parasitoid Anagrusatomus L. (Hymenoptera: Mymaridae) for controlof the greenhouse leafhopper Empoascadecipiens Paoli (Homoptera: Cicadellidae). Theegg-adult development time, survivorship andreproduction of A. atomus were evaluatedat four constant temperatures (16, 20, 24 and28°C). Developmental time ranged from33.6 days at 16°C to 13.3 days at 28°C. Based on a linear regression ofdevelopment rate on temperature the lowerthreshold was estimated at 8.39°C. Anagrus atomus required 263.2 degree-days tocomplete its development from egg to adult. Theegg-adult survival rate and the sex ratio weresignificantly lower at 28°C than at theother three temperatures tested. The intrinsicrate of increase (r m) variedsignificantly between all four temperatures.The potential of A. atomus to attackdifferent host ages was additionallyinvestigated. Host eggs were parasitizedthroughout their development but rate ofparasitism was reduced in host eggs older thansix days. The number of eggs parasitized waspositively density dependent but the rate ofparasitism decreased with increasing hostdensity. A maximum rate of parasitism of 62.5%was recorded. The potential impact of the eggparasitoid on the population dynamics of E. decipiens is discussed.  相似文献   

9.
Development, survival and reproduction of Euseius finlandicus Oudemans were studied at seven constant temperatures (15, 20, 25, 27, 30, 32 and 34°C) in the laboratory. Within the temperature range tested, developmental period from egg to adult varied from 148 to 360.5h and 133.7 to 336.5h for females and males, respectively. The lower thermal threshold for immature development for females and males was 8.9 and 6.4°C, respectively. Survival during immature development exceeded 90% at all the temperatures from 15 to 32°C, but at 34°C an abrupt decline was recorded. Female longevity decreased gradually from 82.7d at 15°C to 12.2 d at 34°C. The mean generation time ranged from 44.3d at 15°C to 15.9d at 32°C. The highest r m value (0.2817) was obtained at 30°C and the lowest at 15°C (0.0976). Temperatures above 30°C had an adverse effect on population increase.  相似文献   

10.
The development and survival of female Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae) from egg to complete ovarian maturation were studied in the laboratory at five different constant temperatures: 15, 20, 25, 30, and 35 °C. The aim of this study was to get information on the influence of temperature on pre-mature stages, as a prerequisite to optimise rearing procedures and to understand temporal and geographical patterns of fruit fly occurrence. The developmental rate of the different life stages increased linearly with increasing temperatures up to 30 °C. The fastest development of pre-mature stages was recorded at 30 °C (22±1 days) and the slowest at 15 °C (98±3 days). The day-degrees requirements (K) to complete total development were 432.6 day-degrees. Lower temperature thresholds were 11.4, 11.9, 10.0, and 11.1 °C for egg, larval, pupal stages and ovarian maturation, respectively. The number of adults obtained from an initial batch of 100 eggs reached a maximum (64) at 25 °C. At 35 °C, no adults emerged. Larval developmental time was significantly shorter in green tomato fruits than in potato tubers at 15, 20, and 25 °C. Mortality rate of larvae was higher in green tomato fruits than in potato tubers at 25 and 30 °C.  相似文献   

11.
Females of Zeiraphera canadensis Mut. & Free., the spruce bud moth, were reared in the laboratory at constant and alternating temperatures, and in an outdoor insectary, to (1) determine the effects of temperature, age and size on several reproductive parameters and, (2) to test the hypothesis that body size-temperature interactions influence longevity and realized fecundity. Egg maturation was linearly related to age and large moths developed eggs at a higher rate than small ones. Mcan lifetime oviposition rate reached a maximum and remained stable at temperatures 20° C while the mean lifetime rate of egg maturation increased linearly with temperature, indicating that higher temperatures adversely affect oviposition. The production of nonviable eggs increased with age but also with temperature, suggesting high temperature (25° C) reduces egg quality and/or hinders fertilization. The realized fecundity and longevity of females reared under an alternating temperature regime (mean 20° C) was significantly less than that of females reared at constant 20° C. Similar realized fecundity, longevity and mean lifetime oviposition rates for females reared at temperatures alternating between 10 and 25° C (mean 20° C) and those at constant 25° C reflected the inability of females to recover from elevated diurnal temperatures. Longevity was positively related to female body size at constant 15 and 20° C but the relationships were negative for moths exposed to diurnal temperatures equal to or exceeding 25° C. Due to the reduced longevity of large moths at high temperatures, linear regressions between size and realized fecundity were only significant at constant temperatures 20° C. At higher temperatures, the size-fecundity relationship became curvilinear as a result of the diminished reproductive output of large individuals. Reduced fecundity and longevity of large females at high temperatures may have been due to elevated internal temperatures of large-bodied moths. Large females in a controlled-environment chamber maintained at 25° C developed an internal temperature excess (i.e. temperature above ambient) of nearly 2° C while small-bodied females exceeded ambient by only 0.3° C. However, when held at 20° C, the temperature excess of large-bodied moths was much less than 1° C and small-bodied females did not differ from ambient. Such interactions between temperature and body size suggest that there should be stabilizing selection toward moderate-sized individuals and may explain the absence of size-related effects on fecundity and longevity previously reported for several other lepidopterans.  相似文献   

12.
The present study includes the effect of temperature on the survival of young and adult snails, embryonic development, embryonic growth and egg laying of Indoplanorbis exustus. In Indoplanorbis exustus the bottom lethal temperature was 7.0°C and 7.5°C for young and adults respectively. while the upper lethal temperature was 34.0°C and 32.0°C for young and adult snails respectively. Between the temperatures 12.5°C and 36.5°C the embryonic development was accelerated and the incubation period was shortened. The growth of embryos was found to be faster at 25.0°C. The optimum temperature for egg laying was observed at 25.0°C.  相似文献   

13.
Development, reproduction and population growth of Thrips setosus Moulton (Thysanoptera, Thripidae), reared on a leaf of kidney bean, was studied under six different constant temperatures, and the effect on reproduction of short photoperiod during immature stages was examined. Survival rates from hatch to adult were more than 67.5% at temperatures between 17.5 and 27.5 °C, but less than 55% at 30 °C. Developmental rates increased linearly as rearing temperature increased. A total of 181.1 degree-days, above a developmental zero of 12.5 °C, were required to complete development from egg to adult oviposition. These data were related to records of field temperatures in Kurashiki in western Japan, and an estimate produced that, under outdoor conditions, a maximum of between seven and 12 generations could have developed annually between 1990 and 1999. There were no significant differences in mean adult longevity and mean fecundity among three temperatures (20, 22.5 and 25 °C). The intrinsic rate of natural increase (r m) was 0.1997 at 25 °C. Reproductive diapause was induced by a photoperiod less than 12 h at 20 °C.  相似文献   

14.
Summary Developoment, growth, and survival of larvae and pupae of the red turnip beetle, Entomoscelis americana Brown, were studied in 10 constant and four alternating temperature regimes (10 to 32.5° C), in field-cages, and in natural populations in Manitoba. This beetle has a northtemperate distribution in North America. Larval and pupal development occurs in spring and normally is completed before the end of June. Growth and development occurred at all constant temperatures tested, but survival was low at the extreme temperatures. Therefore, the threshold and upper limit were near 10 and 32.5° C. The developmental times of the sexes did not differ and decreased with temperature, except possibly at 32.5° C. The average weight of adult females increased with temperature up to 32.5° C and those of males up to 25° C. Considering developmental rate, survival, adult weight, and incidence of malformed adults, the optimum temperature was estimated to be near 27.5° C.Development was accelerated significantly (6 to 9%) in alternating regimes with temperatures differing by 10° C, but not in regimes differing by 5 and 15° C. All alternating regimes increased adult weight, 5 to 17% for females and 2 to 10% for males. Field cage studies confirmed the increase in adult weight, but not the acceleration in development.A three-parameter normal function described accurately the relationship between developmental rate and constant temperature. A computer simulation model based on this equation estimated developmental times in field cages to within one to five days. For natural populations the model overestimated the developmental times by five to 16 days. The discrepancies between model estimates and observed developmental times in natural populations apparently were due to the elevation of larval and pupal body temperatures above air temperatures by behavioral thermoregulation. The elevation of body temperature was estimated to be equivalent to the addition of 5 to 6° C to the maximum daily air temperature. The adaptations and responses of this beetle to the cool spring temperatures of the north-temperate region are discussed.Contribution No. 1164, Agriculture Canada, Research Station, Winnipeg, Manitoba, Canada  相似文献   

15.
The effects of temperature and larval density on survival of larvae, growth rate, age at pupation, and adult size (measured as wing length and dry weight) of laboratory-reared Anopheles gambiae (Diptera: Culicidae) were studied. Larvae were reared at three temperatures (24, 27 and 30°C) and three densities (0.5, 1 and 2 larvae/cm2). The effects of density and temperature strongly interacted to determine the mosquitoes' life-history parameters. Survival was highest at the intermediate temperature of 27°C. The differences between the temperatures increased with increasing density. At 30°C survival decreased as density increased, but at 27°C increasing density led to higher survival. Age at pupation increased as temperature decreased from 30°C to 24°C and as density decreased from 2 to 0.5 larvae/cm2. Adult size also increased as temperature decreased, but showed a negative correlation with density only at 27°C. In contrast, at 24°C and 30°C a decrease in density led to a decrease in adult size. Growth rate showed a similar pattern. At 27°C growth rate decreased as density increased, but at other temperatures the opposite trend was observed.  相似文献   

16.
Stethorus japonicusKamiya (Coleoptera: Coccinellidae) is an indigenous ladybird beetle in Japan, which feeds on many spider mite species. We evaluated the development, survivorship and life-history parameters of this lady beetle on a diet of eggs of the two-spotted spider mite, Tetranychus urticae Koch (red form) (Acari: Tetranychidae). In addition, the effect of short photoperiod on its reproduction was assessed. Survival rates from egg to adult were more than 71% at temperatures between 17.5 and 30 °C. The highest immature mortality was 100% at 35 °C followed by 76% at 15 °C and 52% at 32.5 °C. The lower threshold temperature for development from egg to egg-laying adult was 13.0 °C and the thermal constant was calculated as 238.7° days. Based on these data, the maximum number of generations that could complete development in a year under field conditions in Ibaraki, central Japan, would be between five and seven. The intrinsic rates of natural increase (rm) were 0.093 at 20 °C, 0.156 at 25 °C and 0.241 at 30 °C. Reproductive diapause was induced at photoperiods with light phases shorter than 13 h at 18 °C.  相似文献   

17.
Nymphal development of Cacopsylla moscovita (And.) (Homoptera: Psylloidea) takes place only on female catkins of Salix repens L. and close phenological synchrony is crucial because development times of catkins and nymphs are similar. Eggs are laid on catkins as soon as they develop and close synchrony between oviposition and budburst maximizes time available for nymphal development. Sampling adult C. moscovita in the field revealed little synchrony between egg development and budburst, with over 60% of females containing mature eggs four weeks before catkins first appeared. In the laboratory, egg development was influenced by both temperature and photoperiod. At 10°C, egg development occurred approximately one month earlier than at 5°C and two weeks earlier than in the field. Adult survival in the laboratory was substantially reduced at increased temperature, with only 20% of adults surviving longer than two weeks at 10°C, compared with over 95% at 5°C. Body condition (weight corrected for size) of males and females decreased significantly in the field over winter. However, body condition of females levelled off before budburst, coincident with egg development implying that females had resumed feeding. We discuss our results in relation to regulation of phenological synchrony between oviposition and catkin appearance.  相似文献   

18.
M. Büns  H. T. Ratte 《Oecologia》1991,88(4):470-476
Summary Chaoborus crystallinus fourth-instar larvae were reared individually at 14°, 17° and 20° C under different food conditions. Daphnia magna of 1.25 mm average length served as prey. The following were measured: amount of prey ingested, larval weight gain, duration of fourth instar, body weight of the adults, and egg number per female. At a given temperature, the body weight, egg-number and developmental rate increased with food consumption. At a given food consumption, higher temperatures caused a decrease in body weight and egg number, and an increase in developmental rate. Gross production efficiencies for fourth-instar larvae were highest at temperatures around 17° C. The results clearly indicate that from an energetic point of view higher temperatures are disadvantageous. In C. crystallinus vertical migration is evidently a way of lowering the temperature to which the animals are exposed and hence optimizing food conversion into biomass and offspring production, especially if prey densities are below the saturation level.  相似文献   

19.
Developmental rates for Copidosoma koehleri Blanchard (Hymenoptera: Encyrtidae) and its host, Phthorimaea operculella (Zeller), were determined at 10, 15, 23, 27, 29, 32, 34 and 35°C from host egg to adult. The developmental rates determined for both species showed good fit to mathematical models of insect development. At 15°C mean emergence of adult C. koehleri was 15 days after P. operculella adults emerged. At 29°C mean emergence of C. koehleri was only 5 days after that of P. operculella. P. operculella developed at 35°C, but parasitized larvae, and therefore C. koehleri, did not tolerate temperatures above 32°C. In the presence of C. koehleri, host survival was low (3%) at low host egg densities, but greater (20%) at higher host densities. Parasitized larvae of P. operculella were less able to compete for food resources, as measured by adult emergence.  相似文献   

20.
Preimaginal development and adult longevity and reproduction of Dichochrysa prasina Burmeister were studied at six constant temperatures (15, 20, 25, 27, 30 and 33 °C) and a photoperiod of 16:8 (L:D). Eggs of the flour moth Ephestia kuehniella (Zeller) were used as food throughout preimaginal development, whereas the adults of D. prasina fed on a liquid diet of water, yeast hydrolysate, sugar and honey. At the highest tested temperature of 33 °C no larvae completed their development. At the rest of the tested temperatures the egg to adult developmental period ranged from approximately 92 days at 15 °C to 25 days at 30 °C. Percentages of adult emergence ranged from 36% at 15 °C to 84% at 30 °C. Both adult longevity and fecundity were significantly affected by temperature and the intrinsic rate of increase (rm) reached its maximum value at 27 °C. These results could be useful for the establishment of a small scale rearing and mass production of D. prasina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号