首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macronucleus of the ciliate Tetrahymena contains approx. 104 ribosomal RNA gene molecules (rDNA) in the form of linear, autonomously replicating palindromes. Previous studies have shown that macronuclear rDNA molecules derived from wild-type (wt) inbred strain C3 out-replicate those derived from wt inbred strain B, in macronuclei initially heterozygous for both, leading to the complete loss of the B rDNA. However, rmm-1, a cis-acting laboratory-induced mutation obtained previously by mutagenesis of inbred strain C3, causes the mutant rmm-1 rDNA to be completely out-replicated by B rDNA. These findings suggest the following hierarchy of replication potential: wt C3 > wt B > C3-rmm-1. We used electroporation to test whether cells containing only rmm-1 macronuclear rDNA are favorable recipients for transformation with either wt B or C3 donor rDNA molecules. The donor rDNA molecules carried the selectable marker Pmr (paromomycin resistance) located in the coding region of the 17S rRNA. Transformants were obtained, at a frequency > 1 in 105, by electroporation under a wide range of electrical discharge parameters. The fraction of cells surviving electroporation varied between 2 and > 95% in successful experiments. Replacement (‘transplacement’) of the recipient rDNA was observed, consistent with the prediction that B and C3 rDNA should out-replicate rmm-l rDNA. These findings are also consistent with the previous conclusion that the differential replication determinants reside in the 5'-nontranscribed spacer of the rDNA.  相似文献   

2.
The autonomously replicating rRNA genes (rDNA) in the somatic nucleus of Tetrahymena thermophila are maintained at a copy number of approximately 10(4) per nucleus. A mutant in which the replication properties of this molecule were altered was isolated and characterized. This mutation of inbred strain C3, named rmm4, was shown to have the same effect on rDNA replication and to be associated with the same 1-base-pair (bp) deletion as the previously reported, independently derived rmm1 mutation (D. L. Larson, E. H. Blackburn, P. C. Yaeger, and E. Orias, Cell 47:229-240, 1986). The rDNA of inbred strain B, which is at a replicational disadvantage compared with wild-type C3 rDNA, has a 42-bp deletion. This deletion is separated by 25 bp from the 1-bp deletion of rmm4 or rmm1. Southern blot analysis and DNA sequencing revealed that during prolonged vegetative divisions of C3-rmm4/B-rmm heterozygotes, somatic recombination produced rDNAs lacking both the rmm4-associated deletion and the 42-bp deletion. In somatic nuclei in which this rare recombinational event had occurred, all 10(4) copies of nonrecombinant rDNA were eventually replaced by the recombinant rDNA. The results prove that each of the two deletions is the genetic determinant of the observed replication disadvantage. We propose that the analysis of somatically recombinant rDNAs can be used as a general method in locating other mutations which affect rDNA propagation in T. thermophilia.  相似文献   

3.
4.
5.
The origin recognition complex (ORC) plays a central role in eukaryotic DNA replication. Here we describe a unique ORC-like complex in Tetrahymena thermophila, TIF4, which bound in an ATP-dependent manner to sequences required for cell cycle-controlled replication and gene amplification (ribosomal DNA [rDNA] type I elements). TIF4's mode of DNA recognition was distinct from that of other characterized ORCs, as it bound exclusively to single-stranded DNA. In contrast to yeast ORCs, TIF4 DNA binding activity was cell cycle regulated and peaked during S phase, coincident with the redistribution of the Orc2-related subunit, p69, from the cytoplasm to the macronucleus. Origin-binding activity and nuclear p69 immunoreactivity were further regulated during development, where they distinguished replicating from nonreplicating nuclei. Both activities were lost from germ line micronuclei following the programmed arrest of micronuclear replication. Replicating macronuclei stained with Orc2 antibodies throughout development in wild-type cells but failed to do so in the amplification-defective rmm11 mutant. Collectively, these findings indicate that the regulation of TIF4 is intimately tied to the cell cycle and developmentally programmed replication cycles. They further implicate TIF4 in rDNA gene amplification. As type I elements interact with other sequence-specific single-strand breaks (in vitro and in vivo), the dynamic interplay of Orc-like (TIF4) and non-ORC-like proteins with this replication determinant may provide a novel mechanism for regulation.  相似文献   

6.
The macronuclear rRNA genes (rDNA) in the ciliate Tetrahymena thermophila are normally palindromic linear replicons, containing two copies of the replication origin region in inverted orientation. A circular plasmid containing a single Tetrahymena rRNA gene (one half palindrome) joined to a tandem repeat of a 1.9-kilobase (kb) rDNA segment encompassing the rDNA replication origin and known replication control elements was used to transform Tetrahymena macronuclei by microinjection. This plasmid was shown previously to have a replication advantage over the rDNA allele of the recipient cell strain (G.-L. Yu and E. H. Blackburn, Proc. Natl. Acad. Sci. USA 86:8487-8491, 1990). During vegetative cell divisions, the circular and palindromic rDNAs were rapidly replaced by novel, successively longer linear rDNAs that eventually contained up to 30 tandem 1.9-kb repeats, resulting from homologous but unequal crossovers between the 1.9-kb repeats. We present evidence to show that increasing the number of copies of the replication control regions increases the replicative advantage of the rDNA, the first such situation for a cellular nuclear replicon in a eucaryote.  相似文献   

7.
In the ciliated protozoan, Tetrahymena thermophila, the diploid germinal micronucleus contains two allelic copies of the gene for ribosomal RNA (rDNA). During genesis of new somatic macronuclei the germline rDNA gene is excised by developmentally programmed chromosome breakage and preferentially amplified to ∼9,000 copies. We have studied this process by fluorescence in situ hybridization. We find that initially rDNA amplification is restricted to two separate and highly confined regions of the nucleus. Analysis of nuclei that are hemizygous for the rDNA locus reveals that each focus of hybridization is derived from a single allele of the rDNA. As rDNA amplification progresses these two foci of hybridization disperse and spread throughout the macronucleus, eventually forming ∼100–500 new nucleoli. These events are correlated with morphologically distinct developmental stages. We investigated the amplification of the C3 allele of the rDNA that confers a replication advantage over the B allele during vegetative propagation, and find no evidence for preferential amplification of the C3 early in rDNA maturation. We also show that the rmm 11 rDNA mutant allele, which is defective for developmentally programmed rDNA excision, can be amplified during the two-foci stage in mutant homozygotes and heterozygotes, but fails to amplify further and disperse into multiple nucleoli. These data indicate that amplification of the rmm 11 allele is not delayed during the initial rounds of amplification, and suggest that efficient excision is not required for this amplification to occur. We propose that rDNA amplification is a two-step process. First, the two rDNA alleles are independently amplified, while allelic copies remain closely associated. Later, copies of the rDNA disperse and are further amplified, presumably because rDNA excision has occurred, generating fully mature rDNA minichromosomes that are able to replicate to high copy number. Received: 21 February 1997; in revised form: 21 April 1997 / Accepted: 5 May 1997  相似文献   

8.
Recombinant viruses were constructed to have an Escherichia coli replicon containing a mutagenesis marker, the supF gene, integrated within the thymidine kinase locus (tk) of herpes simplex virus type 1. These viruses expressed either wild-type or mutant DNA polymerase (Pol) and were tested in a mutagenesis assay for the fidelity of their replication of the supF gene. A mutation frequency of approximately 10(-4) was observed for wild-type strain KOS-derived recombinants in their replication of the supF gene. However, recombinants derived from the PAA(r)5 Pol mutant, which has been demonstrated to have an antimutator phenotype in replicating the tk gene, had three- to fourfold increases in supF mutation frequency (P < 0.01), a result similar to that exhibited when the supF gene was induced to replicate as episomal DNA (Y. T. Hwang, B.-Y. Liu, C.-Y. Hong, E. J. Shillitoe, and C. B. C. Hwang, J. Virol. 73:5326-5332, 1999). Thus, the PAA(r)5 Pol mutant had an antimutator function in replicating the tk gene and was less accurate in replicating the supF gene than was the wild-type strain. The spectra of mutations and distributions of substituted bases within the supF genes that replicated as genomic DNA were different from those in the genes that replicated as episomal DNA. Therefore, the differences in sequence contents between the two target genes influenced the accuracy of the Pol during viral replication. Furthermore, the replication mode of the target gene also affected the mutational spectrum.  相似文献   

9.
A precore-deficient mutant of duck hepatitis B virus (DHBV) produced by site-directed mutagenesis was tested for its ability to compete with wild-type virus in a mixed infection of 3-day-old ducklings. The mutation was shown to produce a cis-acting defect, resulting in a replication rate that was about one-half that of wild-type virus. Accordingly, wild-type virus was rapidly selected during the spread of infection. During the chronic phase of the infection, however, two selection patterns were seen. In 4 of 10 ducks, the wild-type virus slowly replaced the precore mutant. In another four ducks, the precore mutant virus slowly replaced the wild-type virus. In the remaining two ducklings, ratios of wild-type and precore mutant virus fluctuated, with wild-type virus slowly predominating. The replacement of wild-type virus was not due to the emergence of a rapidly replicating variant of the precore mutant, since genomes cloned from the infected ducks retained their original replication defect. Replacement of wild-type virus, however, correlated with elevated anti-core antibody titers, which continued to increase with time. The selection of a precore-negative strain of DHBV may be analogous to the selection for precore mutants of HBV during chronic hepatitis in humans.  相似文献   

10.
A temperature-sensitive mutant defective in DNA replication, tsFT848, was isolated from the mouse mammary carcinoma cell line FM3A. In mutant cells, the DNA-dependent ATPase activity of DNA helicase B, which is a major DNA-dependent ATPase in wild-type cells, decreased at the nonpermissive temperature of 39 degrees C. DNA synthesis in tsFT848 cells at the nonpermissive temperature was analyzed in detail. DNA synthesis measured by incorporation of [3H]thymidine decreased to about 50% and less than 10% of the initial level at 8 and 12 h, respectively. The decrease in the level of thymidine incorporation correlated with a decrease in the number of silver grains in individual nuclei but not with the number of cells with labeled nuclei. DNA fiber autoradiography revealed that the DNA chain elongation rate did not decrease even after an incubation for 10 h at 39 degrees C, suggesting that initiation of DNA replication at the origin of replicons is impaired in the mutant cells. The decrease in DNA-synthesizing ability coincided with a decrease in the level of the DNA-dependent ATPase activity of DNA helicase B. Partially purified DNA helicase B from tsFT848 cells was more heat sensitive than that from wild-type cells. Inactivation of DNA-dependent ATPase activity of DNA helicase B from mutant cells was considerably reduced by adding DNA to the medium used for preincubation, indicating that the DNA helicase of mutant cells is stabilized by binding to DNA.  相似文献   

11.
Hepatitis C virus (HCV) and GB virus B (GBV-B) replicons have been reported to replicate only in Huh7 cells. Here we demonstrate that subpopulations of another human hepatoma cell line, Hep3B, are permissive for the GBV-B replicon, showing different levels of enhancement of replication from those of the unselected parental cell population. Adaptive mutations are not required for replication of the GBV-B replicon in these cells, as already demonstrated for Huh7 cells. Nonetheless, we identified a mutant replicon in one of the selected cell lines, which, although lacking the 5' end proximal stem-loop, is able to replicate in Hep3B cells as well as in Huh7 cells. This mutant indeed shows a higher replication efficiency than does wild-type replicon, especially in the Hep3B cell clone from which it was originally recovered. This indicates that the stem-loop Ia is not necessary for replication of the GBV-B replicon in human cells, unlike what occurs with HCV, and that its absence can even provide a selective advantage.  相似文献   

12.
The free, linear macronuclear ribosomal RNA genes (rDNA) of Tetrahymena are derived from a unique copy of micronuclear rDNA during development. We have injected cloned copies of the micronuclear rDNA that have been altered in vitro into developing macronuclei and obtained transformants that express the paromomycin-resistant phenotype specified by the injected rDNA. In most cases, these transformants contain almost exclusively the injected rDNA which has been accurately processed into macronuclear rDNA. Mutants with a 119 bp insertion at three points in the transcribed spacers and at two points in the 26S rRNA coding region were tested. Cells containing these spacer mutant rDNAs are viable, although one of them grows slowly. This slow-growing line contains the insertion between the 5.8S and 26S rRNA coding regions and accumulates more rRNA processing intermediates than control lines. One of the 26S rRNA mutants failed to generate transformants, but the other did. These transformants grew normally, and produced 26S rRNA containing the inserted sequence. A longer insertion (2.3 kb) at the same four points either abolished transformation or generated transformants that retained at least some wild-type rDNA. This study reveals that some rRNA sequences can be altered without significantly affecting cell growth.  相似文献   

13.
14.
Abstract An uracil auxotrophic mutant of baker's yeast Torulaspora delbrueckii , which is resitant to 5-fluoro-orotic acid, was complemented by transformation with YEp24 which harbors 2 μm origin and URA3 derived from Saccharomyces cerevisiae . The phospholipase B in T. delbrueckii cells is active in both acidic and alkaline conditions. However, activity of phospholipase B gene ( PLB1 ) in cells of disruption mutant ( plbI : : URA3 ) was lost in both conditions, which indicates that all phospholipase B activity is encoded by a single gene (or a single polypeptide) in these yeast cells. Over-expression of PLB1 with YEp plasmid vector in T. delbrueckii cells showed ∼ 2.5-fold increase in phospholipase B activity, comparing with that in wild-type cells. Cells of plb1 Δ mutant showed increased survival when cells of plb1 Δ mutant and wild-type strain were incubated in water at 30 °C. Cells of PLB1 -over-expressed strain died rapidly even during the cultivation period, indicating that phospholipase B activity may be a determinant for the survival of this yeast.  相似文献   

15.
Exonuclease III, encoded by the xthA gene, plays a central role in the base excision pathway of DNA repair in bacteria. Studies with Escherichia coli xthA mutants have also shown that exonuclease III participates in the repair of oxidative damage to DNA. An isogenic xthA-1 mutant (designated CAM220) derived from virulent Brucella abortus 2308 exhibited increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) compared to the parent strain. In contrast, 2308 and the isogenic xthA-1 mutant displayed similar levels of resistance to the DNA cross-linker mitomycin C. These phenotypic properties are those that would be predicted for a strain defective in base excision repair. The B. abortus xthA-1 mutant also displayed reduced resistance to killing by H2O2 and the ONOO(-)-generating compound 3-morpholinosydnonimine (SIN-1) compared to strain 2308, indicating that the xthA-1 gene product participates in protecting B. abortus 2308 from oxidative damage. Introducing a plasmid-borne copy of the parental xthA-1 gene into CAM220 restored wild-type resistance of this mutant to MMS, H2O2, and SIN-1. Although the B. abortus xthA-1 mutant exhibited increased sensitivity to oxidative killing compared to the parental strain in laboratory assays, CAM220 and 2308 displayed equivalent spleen colonization profiles in C57BL/6 [corrected] mice through 8 weeks postinfection and equivalent intracellular survival and replication profiles in cultured murine macrophages. Thus, although the xthA-1 gene product participates in base excision repair and resistance to oxidative killing in B. abortus 2308, XthA-1 is not required for wild-type virulence of this strain in the mouse model.  相似文献   

16.
Synopsis.
The amitotic division of the macronucleus of Paramecium tetraurelia produces daughter macronuclei which frequently differ in DNA content. In wild-type cells these differences are small, but can be increased substantially by the action of mutant genes. The variance in macronuclear DNA content would increase continuously if there were no mechanism to regulate it. Paramecium has a very effective regulatory mechanism—all cells synthesize similar amounts of macronuclear DNA, regardless of the number of macronuclei or their prereplication DNA content. DNA synthesis is controlled at the level of macronuclear subunits, and the postreplication macronucleus consists of a mosaic of subunits that have undergone different numbers of replication events during the previous cell cycle. It is evident from experimental results that the amount of DNA synthesized can be influenced by the total size or mass of the cell. Experimental modification of the initial DNA content leads to no change in the amount of DNA synthesized, or in the subsequent protein content of the cells, but modification of cell size causes corresponding changes in the amount of DNA synthesized and in the size of the macronucleus. The implications of these observations for cell growth and the cell cycle are discussed.  相似文献   

17.
S J Projan  R P Novick 《Plasmid》1984,12(1):52-60
An experimental analysis of the concept that incompatible plasmids occupy a common intracellular pool from which copies are drawn at random for replication and assortment is presented. Intrapool variations in an incompatible heteroplasmid strain are inevitable and it is shown that these variations can be exploited by differential selection to amplify one plasmid at the expense of the other. Constant overall copy number is demonstrated for isogenic wild-type replicons and also for isogenic copy mutants whose copy numbers are so great that segregational incompatibility cannot be measured. In the test system used, that of the Staphylococcus aureus plasmid pT181, the rate of replication is probably determined by the availability of a trans-active initiator protein, RepC. In heteroplasmid strains containing wild-type and dominant copy mutant plasmids, although intrapool variation occurs, the total copy number is not constant but varies as a consequence of selection for or against the mutant plasmid. This is because all of the RepC is synthesized from the mutant plasmid (the wild-type is hyper-repressed) and therefore the selection affects the supply of RepC at the same time that it affects the copy number of the plasmid. None of these effects are seen with single plasmids or with compatible pairs.  相似文献   

18.
The replication proteins encoded in the P2 region of the poliovirus genome induce extensive rearrangement of cellular membranes into vesicles and are a required component of viral RNA replication complexes. To identify distinct viral protein(s) from the P2 region of the genome that were required to form functional RNA replication complexes, the P2 proteins were expressed in addition to P3 in HeLa S10 translation-RNA replication reactions. Membrane-associated preinitiation replication complexes were isolated from these reactions and used to measure negative-strand synthesis. The formation of replication complexes capable of initiating negative-strand synthesis was observed when either P23 or when P2 and P3 were expressed in the HeLa S10 translation-replication reactions. The amount of negative-strand RNA synthesized with P2 and P3 was approximately 50% of that observed with P23. Negative-strand synthesis was not observed when the processed forms of the P2 proteins (e.g., 2A, 2B, 2C, 2AB, and 2BC) were used in various combinations in place of P2. In contrast, the expression of 2A and 2BCP3 supported negative-strand synthesis at the same level observed with P23. Therefore, functional replication complexes were formed in reaction mixtures that contained either 2A and 2BCP3 or P2 and P3. Genetic complementation analysis of P23 RNA that contained a lethal mutation in 2C confirmed these results. The expression of 2BCP3 in trans restored the replication of P23-2C(P131N) RNA to wild-type levels. The expression of P2 and P3 also complemented the replication of this mutant RNA, although very inefficiently. Complementation was not observed in reactions that contained P2 alone, 2BC, or 2C. Based on these results, we propose that RNA replication complexes are initially formed with the primary cleavage products of P23 (i.e., P2 and P3 or 2A and 2BCP3), and that 2A and 2BCP3 are preferentially used in this process.  相似文献   

19.
The ssb-1 mutation confers severe temperature sensitivity and UV sensitivity on many strains of Escherichia coli K-12 and C, including strain C1412. However, ssb-1 confers only slight temperature sensitivity and slight UV sensitivity on strain C1a, suggesting that strain C1a contains extragenic suppressors of ssb-1. We found that introduction of the wild-type rep gene from C1a into strain C1412 ssb-1 gave strong suppression of temperature sensitivity and moderate suppression of UV sensitivity. Also, the C1a rep+ gene mildly suppressed the temperature sensitivity conferred by the ssb-113 mutation, formerly called lexC113. Suppression of the C1412 ssb-1 growth defect by C1a rep+ rendered the cells Gro- for phi X174. In contrast to the positive suppression of ssb-1 and ssb-113 by a wild-type rep gene, mutant rep alleles enhanced the severity of the ssb-1 defect, with several C1a ssb-1 double mutants being either more temperature sensitive or more UV sensitive than C1a ssb-1, depending on which mutant rep allele was used. As a control, the same rep alleles in combination with a dnaB mutation gave an allele-independent increase in temperature sensitivity. Our results on suppression of ssb-1 by rep and on the role of the genetic background in this suppression suggested that the rep and ssb proteins interact to form a subcomplex of the total DNA replication complex and that this subcomplex has some function in repair. The effects of NaCl and glucose on suppression of both the temperature sensitivity and the UV sensitivity conferred by ssb-1 and ssb-113 are described. The degree of suppression of temperature sensitivity by salt or glucose was dependent on the source of the wild-type rep allele, as well as on the genetic background.  相似文献   

20.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39°C, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39°C. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号