首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Background and AimsIn Mediterranean ecosystems, the heat shock of wildfire disrupts physical seed dormancy in many plant species. This triggers germination in the post-fire environment where seedling establishment is optimal due to decreased competition and increased resource availability. However, to maintain the soil seed bank until a fire occurs, the minimum heat capable of breaking seed dormancy (i.e. the lower heat threshold) must be above the maximum temperatures typically observed in the soil during the summer. We therefore hypothesized that summer temperatures have shaped heat requirements for physical dormancy release. Specifically, we predicted that seeds from populations growing under warmer summers will have higher values of the lower heat threshold.MethodsTo evaluate this prediction, we collected seeds from two Cistus species in 31 populations (20 Cistus albidus and 11 Cistus salviifolius) along a climate gradient of summer temperatures on the eastern coast of Spain. For each population, seeds were treated to 10 min heat shocks, from 30 to 120 °C in 5 °C increments (19 treatments), to simulate increasing heat doses from summer to fire-related temperatures. Seeds were then germinated in the lab.Key ResultsFor all populations, maximum germination was observed when applying temperatures associated with fire. Lower heat thresholds varied among populations, with a positive relationship between summer temperatures at seed population origin and the heat dose required to break dormancy.ConclusionsOur results suggest that fire drives maximum dormancy release for successful post-fire germination, while summer temperatures determine lower heat thresholds for ensuring inter-fire seed bank persistence. Significant among-population variation of thresholds also suggests that post-fire seeder species have some potential to modify their dormancy release requirements in response to changing climate.  相似文献   

2.
Background and Aims Intra-population variation in seed dormancy is an advantage for population persistence in unpredictable environments. The important role played by physically dormant species in these habitats makes understanding the level of variation in their dormancy a key ecological question. Heat produced in the soil is the major dormancy-breaking stimulus and, in fire prone ecosystems, soil temperatures generated by fire may vary spatially and over time. While many studies have investigated variation in initial dormancy, a measure that is of little value in fire-prone ecosystems, where initial dormancy levels are uniformly high, intra-population variation in dormancy-breaking temperature thresholds has never been quantified. This study predicted that species would display variation in dormancy-breaking temperature thresholds within populations, and investigated whether this variation occurred between individual plants from the same maternal environment.Methods The intra-population variation in dormancy-breaking thresholds of five common physically dormant shrub species (family Fabaceae) from fire-prone vegetation in south-eastern Australia was assessed using heat treatments and germination trials. Replicate batches of seeds from each of four maternal plants of Dillwynia floribunda, Viminaria juncea, Bossiaea heterophylla, Aotus ericoides and Acacia linifolia were treated at 40, 60, 80, 100 and 120 °C.Key Results Dormancy-breaking response to heat treatments varied significantly among individual plants for all species, with some individuals able to germinate after heating at low temperatures and others restricting germination to temperatures that only occur as a result of high-severity fires. Germination rate (T50) varied among individuals of three species.Conclusions Variation detected among individuals that were in close proximity to each other indicates that strong differences in dormancy-breaking temperature thresholds occur throughout the broader population. Differences found at the individual plant level could contribute to subsequent variation within the seed bank, providing a bet-hedging strategy, and represent a mechanism for increasing the probability of population persistence in the face of fire regime variability.  相似文献   

3.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

4.
BACKGROUND AND AIMS: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire. Dormancy and germination mechanisms therefore appear complex and mostly unknown. This study aimed to identify these mechanisms by establishing dormancy class and testing the effects of a set of typical germination cues, including those directly related to fire and entirely independent of fire. METHODS: To classify dormancy, we assessed seed permeability and embryo morphology, and conducted germination experiments at seasonal temperatures in incubators. To test the effects of fire cues on germination, factorial combinations of smoke, heat and dark treatments were applied. Ageing treatments, using burial and seasonal incubation, were also tested. Germination phenology was established. KEY RESULTS: Seeds were dormant at release and had underdeveloped embryos. Primary dormancy of the study species was classified as morphophysiological. Seasonal temperature changes overcame primary dormancy and controlled timing of germination. Fire cues did not break primary dormancy, but there was a trend for smoke to enhance germination once this dormancy was overcome. CONCLUSIONS: Despite the fact that fire is a predominant disturbance and that many species display a flush of emergence post-fire, seasonal temperatures broke the primary physiological dormancy of the study species. It is important to distinguish between fire being responsible for breaking dormancy and solely having a role in enhancing levels of post-fire germination for seeds in which dormancy has been overcome by other factors. Biogeographical evidence suggests that morphological and physiological factors, and therefore seasonal temperatures, are likely to be important in controlling the dormancy and patterns of post-fire germination of many species in fire-prone regions.  相似文献   

5.
The endemic flora of the Canary Islands is remarkable but highly vulnerable to environmental changes. Several factors, such as fire, could be threatening. The purpose of this study was to analyze various treatments in endemic threatened species which could have been growing in the understory of the Canary pine forest. We attempted to improve germination through dormancy breaking, and analyze the influence of fire on these plants. Seven physical and chemical treatments were tested: control, mechanical scarification, boiling water, dry heat (50 and 120?°C), smoke and smoked water. Mechanical scarification showed a positive response in germination percentage in two species characterized by hard seed coat, but out of all of the species tested, only one demonstrated a positive response to any of the treatments related to fire. At the temperatures registered on wildfires, neither the seeds situated on the aerial structure nor seeds in seed bank seem to be able to survive and germinate. The increasing incidence of fires through anthropogenic causes could contribute to the current threat status of these species and poorness of the Canary pine forest understory.  相似文献   

6.
Knox KJ  Clarke PJ 《Oecologia》2006,149(4):730-739
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.  相似文献   

7.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

8.
Abstract Recolonization patterns of a tall‐tussock grassland differ between low‐frequency and high‐intensity fires. A series of laboratory and field experiments were performed on the seed bank and on seeds of the main colonizing species (Carduus acanthoides, Cirsium vulgare, Lotus glaber) to determine and compare the effects of fire frequency and fire intensity on their recolonization potential. Seed‐bank size of colonizing species did not show a significant variation with contrasting fire frequencies, so overall interval‐dependent effects do not seem to affect their propagule pool at the time of fire. However, frequency of fire modified the proportion of viable seeds and their dormancy state according to species. Accumulated emergence from experimentally buried soft‐seeds of Lotus was lower after high‐intensity fires (following wind direction) than after back‐fires (against wind direction), but no significant effects of fire‐front direction on seedling emergence were observed for hard‐seeds of Lotus nor Carduus and Cirsium. Seedling emergence from buried seeds of Cirsium was increased with doubling fuel loads, particularly from deepen soil layers, where Cirsium had most of their viable seeds after a low frequency of fire. Emergence from hard‐seeds of Lotus was less promoted than Cirsium by doubling fuel loads, and according to analysis of excavated seedlings, it was completely inhibited from upper soil layers of the seed bank. Integration of species‐specific and burial depth‐specific responses of Cirsium and Lotus seeds according to fuel load, vertical distribution of the seed banks, seed dormant states and mean emergence depths, resulted in expected emergence values which agree with their previously observed patterns of recolonization. Thus, event‐dependent mechanisms had a better predictive value on recolonization success of the studied species than the observed cumulative effects of fire history on their seed‐bank size.  相似文献   

9.
Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits.  相似文献   

10.
Abstract The germinable soil seed bank of a tropical eucalypt savanna of north‐eastern Australia was found to be dominated by grasses and forbs, with seed bank density ranging from 58 to 792 seeds per square metre, from a total of 53 species. Late dry season fires and the fire‐related cues, heat shock and smoke, broke the seed dormancy of a range of tropical savanna species. Heat shock promoted the germination of the species groups natives, exotics, subshrubs, ephemeral and twining perennial forbs, and the common species Indigofera hirsuta, Pycnospora lutescens and Triumfetta rhomboidea. Exposure to smoke at ambient temperature promoted germination from the soil seed bank of the species groups combined natives, upright perennial forbs and grasses, as well as the common grasses Digitaria breviglumis and Heteropogon triticeus. The germinable soil seed bank varied seasonally, increasing from the mid wet season (February) and early dry season (May) to a maximum in the late dry season (October). The effect of recent fire history on soil seed bank dynamics was limited to the immediate release of some seed from dormancy; a reduction in seed densities of subshrubs and monocots, other than grasses, in recently burnt savanna; and enhanced seed density of the ephemeral I. hirsuta in the year following fire. The seed banks of most savanna species were replenished in the year following burning.  相似文献   

11.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

12.
Current fuel loads and distribution suggest that fire events are infrequent and of a low intensity in the regenerated dry sclerophyll forests of the Victorian box‐ironbark ecosystem. However, many box‐ironbark species possess traits consistent with fire‐cued regeneration. It is unclear the degree to which human disturbance may have altered fire regimes in these forests. The infrequent and low‐intensity fire regime suggested by current fuel dynamics may pose a threat to the persistence of fire‐cued species. Obligate seeders such as those of the Fabaceae and Mimosaceae, common in box‐ironbark understoreys, may be particularly vulnerable if inter‐fire intervals exceed seed longevity. This study used seed burial trials to examine seed dormancy and longevity in five legume species to explore their capacity to regenerate under an infrequent, low‐intensity fire regime. All species displayed dormancy and longevity patterns consistent with other south‐east Australian legumes. Before burial, dormancy levels were high for all species (98–100%). After 3 years, storage under in situ and ex situ conditions, dormancy in Pultenaea prostrata remained at pre‐burial levels with virtually no seed becoming non‐dormant. Over time, some Acacia seed became non‐dormant under both in situ and ex situ storage, with the pattern varying among species. Longevity also varied between species. Variation in the dormancy and longevity patterns observed in these obligate seeder legumes suggests two strategies: (i) releasing a portion of soil‐stored seed from dormancy during the inter‐fire period to permit inter‐fire recruitment; and (ii) retaining most soil‐stored seed as dormant during the inter‐fire interval. Both strategies represent potential weaknesses under a long fire interval regime. The first relies on dormancy release translating to successful recruitment and requires ongoing inter‐fire input into the soil seed bank. The second relies on seed longevity exceeding the inter‐fire interval. Whether either is more suitable to coping with long‐term infrequent fire requires long‐term monitoring.  相似文献   

13.
The effects of fire on the vegetation vary across continents. However, in Neotropical fire‐prone grasslands, the relationship between fire and seed germination is still poorly understood, while their regeneration, especially after strong anthropogenic disturbance, is challenging for their conservation. In the present study, we assessed diversity of germination strategies in 15 dominant herbaceous species from Neotropical altitudinal grasslands (locally known as campos rupestres). We exposed seeds to several fire‐related treatments. We also compared germination between regularly and post‐fire fruiting species. Finally, we investigated the diversity of dormancy classes aiming at better understanding the biogeography and phylogeny of seed dormancy. Germination strategies varied among families. Velloziaceae and Xyridaceae produced non‐dormant, fast‐germinating seeds. Cyperaceae and Poaceae showed an extremely low or null germination due to a high proportion of unviable or embryo‐less seeds. The seeds of campo rupestre grasslands are fire resistant, but there is no evidence that fire triggers germination in this fire‐prone ecosystem. Although heat and charred wood did not promote germination, smoke enhanced germination in one grass species and decreased the mean germination time and improved synchrony in Xyridaceae and Velloziaceae. Fire had a positive effect on post‐fire regeneration by stimulating fruit set in some Cyperaceae and Poaceae species. These species produced faster germinating seeds with higher germination percentage and synchrony compared to regularly fruiting Cyperaceae and Poaceae species. This strategy of dispersion and regeneration seems to be an alternative to the production of seeds with germination triggered by fire. Physiological dormancy is reported for the first time in several clades of Neotropical plants. Our data help advance the knowledge on the role of fire in the regeneration of Neotropical grasslands.  相似文献   

14.
  • Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY‐breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity.
  • Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy‐breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated.
  • Fresh seeds were insensitive to dormancy break at wet–high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction.
  • Seeds of S. multijuga exhibit sensitivity cycling to PY‐breaking. Seeds become sensitive during winter and can germinate with the onset of the spring–summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species.
  相似文献   

15.
Models of vegetation dynamics framed as testable hypotheses provide powerful tools for predicting vegetation change in response to contemporary disturbances or climate change. Synthesizing existing information and applying new data, we develop a conceptual model of vegetation states and transitions for the previously overlooked woodlands dominated by obligate‐seeder eucalypts of dry to semi‐arid south‐western Australia. These comprise the largest extant temperate woodland globally, are uniquely dominated by a high diversity of obligate‐seeder eucalypts (55 taxa), but are under threat from wildfire. Our conceptual model incorporates four critical ecological processes that also distinguish obligate‐seeder woodlands from temperate woodlands dominated by resprouting eucalypts: (i) a lack of well‐protected epicormic buds results in major disturbances (prominently fire) being stand‐replacing. The pre‐disturbance tree cohort is killed, followed by dense post‐disturbance recruitment from seed shed from a serotinous seed bank; (ii) competition between saplings leads to self‐thinning over a multi‐century timeframe, with surviving individuals having great longevity (regularly >400 years); (iii) multiple processes limit recruitment in the absence of stand‐replacement disturbances, leading to frequent single‐cohort stands. However, unlike the few other obligate‐seeder eucalypt communities, trickle recruitment in very long‐unburnt stands can facilitate indefinite community persistence in the absence of stand‐replacement disturbances; and (iv) discontinuous fuels, relatively low understorey flammability (low grass and often high chenopod cover) and topographic barriers to fire (salt lakes) allow mature woodlands to persist for centuries without burning. Notably though, evidence suggests that flammability peaks at intermediate times since fire, establishing a ‘flammability bottleneck’ (or landscape fire trap) through which regenerating woodlands must pass. Our model provides a framework to support management to conserve obligate‐seeder eucalypt woodlands. Research into reasons for exceptional tree heights relative to ecosystem productivity, the evolution of diverse and dominant obligate‐seeder eucalypts, the paucity of grass, and the recent spatial distribution of fires, will further inform conservation management.  相似文献   

16.
Cochrane  Anne 《Plant Ecology》2019,220(2):241-253

This multi-year study examined temperature requirements for dormancy release in physically dormant seeds of the threatened legume Acacia awestoniana (Fabaceae) from Western Australia. Seeds were collected from a single site in three consecutive years and exposed to multiple laboratory-based ‘fire’-related temperature treatments (intensity × duration). Experiments were conducted on seeds freshly collected and after 12 months storage under dry laboratory conditions in order to separate the influence of the maternal environment from post-harvest storage conditions on thresholds for dormancy release. Initial seed viability and non-dormant seed fraction did not differ between seed cohorts but there was a clear effect of storage on seed response: fresh seeds from 2016 demonstrated greater thermal resilience than stored seeds collected in the same year. Equally, there was a strong inter-annual response to treatments from fresh seeds collected in 2016 and 2017 attributed to the influence of the maternal environment during seed development. Seeds collected in 2015 and 2016 and stored for 12 months also demonstrated significant differences in their response to treatments, with 2015 seeds responding more favourably to treatment conditions than those from 2016. Plastic responses to external stimuli provide seeds with a strong bet-hedging capacity and the potential to cope with high levels of environmental heterogeneity, especially a mosaic of fire conditions. Such data provide insight for the management, conservation and restoration of this and similar threatened plant species in fire-prone ecosystems in the face of a rapidly changing climate and expected associated changes in the fire regime.

  相似文献   

17.
Invasive alien plants impact ecosystems, which often necessitates their removal. Where indigenous species recovery fails following removal alone, an active intervention involving reintroduction of seed of native species may be needed. This study investigated the potential for a combination of the fire cues of smoke and heat as a pre‐treatment of seeds in breaking dormancy and facilitating increased germination. Species were selected to represent different functional types within Cape Flats Sand Fynbos; a fire‐prone, critically endangered vegetation type in South Africa. Seeds were exposed to either a heat pulse (temperatures between 60 and 300°C for durations of between 30 s and 20 min) or dry after‐ripening (1 or 2 months at milder temperatures of 45°C or less). Thereafter, seeds were soaked in smoke solution for 18 h and subsequently placed on agar at 10/20°C for germination. Most species fell into one of two main groups: Seed germination in the first group was greatest following a lower temperature (60°C) heat pulse, an extended period of mild temperature (20/40°C or 45°C) exposure, or no pre‐treatment with heat. Seed germination in the second group was promoted after brief exposure to higher (100°C) temperatures. No germination occurred in any species following heat treatments of 150°C or higher. Species which responded better to higher temperatures were mainly those possessing physical dormancy, but seed morphology did not correlate with germination success. This study showed that heat stimulation of seeds is more widespread in fynbos plant families than previously known and will enable the development of better seed pre‐treatment protocols before large‐scale sowing as an active restoration treatment after alien plant clearing.  相似文献   

18.
Fire severity affects vegetation and seed bank in a wetland   总被引:3,自引:0,他引:3  
Questions: How does the severity of prescribed fires affect vegetation and seed bank in a wetland? Location: A fire‐prone reed swamp in northern Japan (250 ha, 40°49′N, 141°22′E, <10 m a.s.l.). Methods: Vegetation, biomass and seed bank were monitored for the 2 yr after annual prescribed fires were discontinued. Plant communities were placed into three categories based on fire severity: high (H) – fire consumed litter completely; moderate (M) – fire removed standing litter but left wet fallen litter; and low (L) – fire incompletely removed standing litter and did not remove fallen litter. Soil samples were collected in autumn 2007 and early summer 2008, and germinable seed bank was investigated by greenhouse trials. Results: High fire severity increased diversity in the next growing season by the establishment of short herbs in the standing vegetation. The biomass of forbs and grasses was greater in H where Phragmites australis biomass was reduced. The density of seed bank was >30 000 seeds m?2 throughout all the treatments. Perennial plants were dominant in the vegetation, while annuals, biennials and rushes were dominant in the seed bank. Small seeds were more abundant in the soil than in the litter. Qualitative and quantitative similarities between seed bank and the vegetation were low, and tended to be higher in H. Conclusions: Fire contributed to the development of diverse standing vegetation via the positive effects on seed bank dynamics, and can be considered a tool to maintain species‐rich marshes.  相似文献   

19.
The Cerrado (Brazilian savanna) is a biodiversity hotspot with a history of fire that goes back as far as 10 million years. Fire has influenced the evolution of several aspects of the vegetation, including reproduction and life cycles. This study tested how fire by‐products such as heat and smoke affect the germination of six species common to two Cerrado open physiognomies: wet grasslands and the campo sujo (grassland with scattered shrubs and dwarf trees). We subjected seeds collected in northern Brazil to heat shock and smoke treatments, both separately and combined, using different temperatures, exposure times, and smoke concentrations in aqueous solutions. High temperatures and smoke did not break seed dormancy nor stimulate germination of the Cerrado study species. However, seeds were not killed by high temperatures, indicating that they are fire‐tolerant. Our findings differed from those of other fire‐prone ecosystems (mostly of Mediterranean vegetation), where fire stimulates germination. Moreover, we provide important information regarding germination strategies of non‐woody Cerrado plants, showing the importance of considering the tolerance of seeds to high temperatures when evaluating fire‐related traits in fire‐prone ecosystems.  相似文献   

20.
The fire avoidance hypothesis proposes that a benefit of seed dispersal by ants (myrmecochory) is to protect seeds from being killed during fire and to facilitate post‐fire germination of seeds that require heat shock to break their physical dormancy. The aim of this study was to quantify the effect of fire and seed burial by a predominant seed‐dispersing ant, Rhytidoponera metallica (subfamily: Ectatomminae) on germination levels of three ant‐dispersed legume species (Pultenaea daphnoides, Acacia myrtifolia and Acacia pycnantha). Experimental burial of seeds within aluminium cans at a site prior to being burnt and at an adjacent unburnt site showed that fire increased germination levels, particularly for seeds buried at 1‐ and 2‐cm deep and that overall, germination levels differed among the three plant species. To quantify seed burial depths and post‐fire germination levels facilitated by R. metallica ants, seeds were fed to colonies prior to fire at the burnt and unburnt sites. Of the seeds buried within nests that were recovered, between 45% and 75% occurred within the upper 6 cm of the soil profile, although unexpectedly, greater percentages of seeds were recovered from the upper 0–2 cm of nests in the unburnt site compared with nests in the burnt site. Germination levels of buried seeds associated with R. metallica nests ranged from 21.2% to 29.5% in the burnt site compared with 3.1–14.8% in the unburnt site. While increased seed germination levels were associated with R. metallica nests following fire, most seeds were buried at depths below those where optimal temperatures for breaking seed dormancy occurred during the fire. We suggest that R. metallica ants may provide fire avoidance benefits to myrmecochorous seeds by burying them at a range of depths within a potential germination zone defined by intra‐ and inter‐fire variation in levels of soil heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号