首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The karst landform in southern China is renowned for its high levels of species diversity and endemism. Globally, karst ecosystems are under threat from unsustainable anthropogenic disturbance and climate changes and are among the most threatened ecosystems worldwide. In this study, we used the typical karst endemic genus in southern China, Primulina Hance, as a model to identify areas within the karst landform with high diversity and to investigate congruence between phylogenetic and species‐based measures of diversity. Using phylogenetic information and species distribution data, we measured geographical patterns of diversity with four metrics: species richness (SR), corrected weighted endemism (CWE), phylogenetic diversity (PD), and phylogenetic endemism (PE). Our results revealed a high spatial congruence among SR, PD, and PE, with hotspot areas identified in the Nanling Mountains (i.e., north Guangdong and northeast Guangxi) and southeast Yungui Plateau (i.e., north and southwest Guangxi), whereas the hotspots of CWE are comparatively uniform throughout the geographic extent. The categorical analysis of neo‐ and paleoendemism identified a pattern of mixed neo‐ and paleoendemism in numerous grid cells, suggesting that karst areas in southern China have acted as both “museums” and “cradles” of plant evolution. Conservation gap analysis of hotspots revealed that the majority of prioritized hotspots (>90%) of the genus are outside of protected areas, therefore indicating the limited effectiveness of national nature reserves for the karst flora. Overall, our results suggest that the karst flora merits more conservation attention and SR can be an effective surrogate to capture PD in conservation planning.  相似文献   

2.
本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。  相似文献   

3.
周韩洁  杨入瑄  李嵘 《广西植物》2022,42(10):1694-1702
全球气候变化与人为活动等因素导致的生物多样性丧失,引起了全球各界对生物多样性保护的高度关注。传统生物多样性保护主要对物种、特有种、受威胁物种的种类组成及其分布模式开展研究,忽视了进化历史在生物多样性保护中的作用。云南是全球生物多样性热点地区的交汇区,生物多样性的保护历来受到广泛关注,为了更好地探讨云南生物多样性的保护措施,该研究以云南被子植物菊类分支物种为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,识别生物多样性的重点保护区域。结果表明:云南被子植物菊类分支的物种、特有种及受威胁物种的物种密度与系统发育多样性均显著正相关;通过零模型分析发现,由南向北标准化系统发育多样性逐渐降低;云南南部、东南部、西北部是云南被子植物菊类分支的重点保护区域,加强这些区域的保护,将最大化地保护生物多样性的进化历史和进化潜能。由此可见,融合进化历史信息的植物多样性格局分析不仅有助于更加深入地理解植物多样性的形成与演变,也为生物多样性保护策略的制定提供更多的思路。  相似文献   

4.
Madagascar is renowned for its unparalleled species richness and levels of endemism, which have led, in combination with species extinction caused by an unprecedented rate of anthropogenic deforestation, to its designation as one of the most important biodiversity hotspots. It is home to 10 650 species (84% endemic) of angiosperms in 1621 genera (19% endemic). During the last two centuries, botanists have focused their efforts on the provision of a taxonomic framework for the flora of the island, but much remains to be investigated regarding the evolutionary processes that have shaped Madagascan botanical diversity. In this article, we review the current state of phylogenetic and biogeographical knowledge of the endemic angiosperm genera. We also propose a new stratified biogeographical model, based on palaeogeographical evidence, allowing the inference of the spatio‐temporal history of Madagascan taxa. The implications of past climate change and extinction events on the evolutionary history of the endemic genera are also discussed in depth. Phylogenetic information was available for 184 of the 310 endemic genera (59.3%) and divergence time estimates were available for 67 (21.6%). Based on this evidence, we show the importance of phylogenetic clustering in the assemblage of the current Madagascan diversity (26% of the genera have a sister lineage from Madagascar) and confirm the strong floristic affinities with Africa, South‐East Asia and India (22%, 9.1% and 6.2% of the genera, respectively). The close links with the Comoros, Mascarenes and Seychelles are also discussed. These results also support an Eocene/Oligocene onset for the origin of the Madagascan generic endemic flora, with the majority arising in the Miocene or more recently. These results therefore de‐emphasize the importance of the Gondwanan break‐up on the evolution of the flora. There is, however, some fossil evidence suggesting that recent extinctions (e.g. Sarcolaenaceae, a current Madagascan endemic, in southern Africa) might blur vicariance patterns and favour dispersal explanations for current biodiversity patterns. © 2013 The Linnean Society of London  相似文献   

5.
Mexico is considered an exceptional biogeographic area with a varied endemic flora, however spatial phylogenetic measures of biodiversity have not yet been estimated to understand how its flora assembled to form the current vegetation. Patterns of species richness, endemism, phylogenetic diversity, phylogenetic endemism and centers of neo‐ and paleo‐endemism were determined to examine differences and congruence among these measures, and their implications for conservation. Of 24 360 vascular plant species 10 235 (42%) are endemic. Areas of endemism and phylogenetic endemism were associated with dry forests in zones of topographic complexity in mountain systems, in deserts, and in isolated xeric vegetation. Every single locality where seasonally tropical dry forests have been reported in Mexico was identified as an area of endemism. Significant phylogenetic diversity was the most restricted and occurred in the Trans‐Mexican Volcanic Belt and in the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo‐, paleo‐, and super‐endemism was identified in southernmost Mexico. Most vascular plant lineages diverged in the Miocene (5–20 mya) when arid environments expanded across the world. The location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid favored the establishment of tropical lineages adapted to extreme seasonality and aridity. These lineages were able to migrate from both North and South America across Central America presumably during the Miocene and to diversify, illustrating the signature of the flora of Mexico of areas of endemism with a mixture of neo‐ and paleo‐endemism.  相似文献   

6.
Systematic research provides essential evidence for setting conservation priorities for rare and endangered taxa. Phylogenetic analyses can identify cryptic, genetically distinct lineages as well as actively interbreeding, and hence, non-distinctive lineages earlier perceived as separate taxa. A major aim of this study was to identify genetically distinct, rare lineages within two Malvaceae sister-genera, Sidalcea and Eremalche. The focus was two taxon-pairs each consisting of one rare and one more common taxon. The results demonstrate that even within two closely related genera, with a large number of rare taxa, molecular phylogenetic analyses can reveal contrasting degrees of evolutionary divergence and thus contrasting conservation implications for threatened taxa. Contrary to expectations, the substitution rate in the nuclear ribosomal transcribed spacers for annual Eremalche did not correspond to the faster evolutionary rate of annuals – compared to perennials – detected earlier within Sidalcea. Branch lengths in the (annual) Eremalche clade were shorter than those of annual members of Sidalcea. The phylogenetic analyses showed that the rare and endangered S. keckii and E. kernensis each are most closely related to a common species that has been regarded as insufficiently distinct to warrant separate taxonomic status. An additional aim of the study was to test the utility of the Phylogenetic Diversity (PD) measure to formalize the procedure of prioritizing conservation efforts. The measure demonstrated S. keckii (but not E. kernensis) to be genetically distinct from its closest relative and a good candidate for conservation. The PD measure was earlier used for assessing conservation priorities for areas, but proved useful to more objectively suggest conservation priorities among threatened taxa. Because this measure is calculated directly from the data, it retains more character information and gives a better representation of genetic diversity than other measures relying on tree topologies.  相似文献   

7.
Aim Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location Global; equal‐area grid cells of approximately 10,000 km2. Methods We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given the underlying level of species richness by using the residuals from the global relationship of species richness and phylogenetic diversity. Results Phylogenetic diversity as measured by either Faith’s PD or TTD was strongly correlated with species richness globally, while the other two indices showed very different patterns. When either Faith’s PD or TTD was tested against species richness, residuals were strongly spatially structured. Areas with unusually low phylogenetic diversity for their associated species richness were mostly on islands, indicating large radiations of few lineages that have successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages. Main conclusions We show spatial structure in the residuals of the relationship between species richness and phylogenetic diversity, which together with the positive relationship itself indicates strong signatures of evolutionary history on contemporary global patterns of amphibian species richness. Areas with unusually low and high phylogenetic diversity for their associated richness demonstrate the importance of biogeographic barriers to dispersal, colonization and diversification processes.  相似文献   

8.
Abstract How to maximize the conservation of biodiversity is critical for conservation planning, particularly given rapid habitat loss and global climatic change. The importance of preserving phylogenetic diversity has gained recognition due to its ability to identify some influences of evolutionary history on contemporary patterns of species assemblages that traditional taxonomic richness measures cannot identify. In this study, we evaluate the relationship between taxonomic richness and phylogenetic diversity of angiosperms at genus and species levels and explore the spatial pattern of the residuals of this relationship. We then incorporate data on historical biogeography to understand the process that shaped contemporary floristic assemblages in a global biodiversity hotspot, Yunnan Province, located in southwestern China. We identified a strong correlation between phylogenetic diversity residuals and the biogeographic affinity of the lineages in the extant Yunnan angiosperm flora. Phylogenetic diversity is well correlated with taxonomic richness at both genus and species levels between floras in Yunnan, where two diversity centers of phylogenetic diversity were identified (the northwestern center and the southern center). The northwestern center, with lower phylogenetic diversity than expected based on taxonomic richness, is rich in temperate‐affinity lineages and signifies an area of rapid speciation. The southern center, with higher phylogenetic diversity than predicted by taxonomic richness, contains a higher proportion of lineages with tropical affinity and seems to have experienced high immigration rates. Our results highlight that maximizing phylogenetic diversity with historical interpretation can provide valuable insights into the floristic assemblage of a region and better‐informed decisions can be made to ensure different stages of a region's evolutionary history are preserved.  相似文献   

9.
The intermediate disturbance hypothesis (IDH) is one of the most debated theories in ecology. However, even when evidence is provided to support the hypothesis, its relevance for phylogenetic conservation has rarely been tested. Here, we investigated this question on birds in the South‐East district of Botswana along a disturbance gradient across three types of landscapes. We first reconstructed the phylogeny for all species recorded. Next, we assessed the relationship between dissimilarity measures and habitat types using the permutational MANOVA. Finally, we tested the IDH by fitting a generalized linear mixed effect model to account for errors due to spatial pseudo‐replications of our collection design. We found that, although species richness and phylogenetic diversity (PD) follow the prediction of the IDH, the evolutionary component of PD (i.e. PSV, phylogenetic species variability) contributes little to the prediction, suggesting that the correlation between PD and disturbance level is driven by the richness component of PD (i.e. PSR, phylogenetic species richness). However, the increased richness at the intermediate disturbance level does not result in phylogenetically diverse bird communities, indicating that the IDH contributes little to phylogenetic diversity. Our study adds to the body of literature questioning the relevance of IDH in ecology.  相似文献   

10.
Identifying geographical areas with the greatest representation of the tree of life is an important goal for the management and conservation of biodiversity. While there are methods available for using a single phylogenetic tree to assess spatial patterns of biodiversity, there has been limited exploration of how separate phylogenies from multiple taxonomic groups can be used jointly to map diversity and endemism. Here, we demonstrate how to apply different phylogenetic approaches to assess biodiversity across multiple taxonomic groups. We map spatial patterns of phylogenetic diversity/endemism to identify concordant areas with the greatest representation of biodiversity across multiple taxa and demonstrate the approach by applying it to the Murray–Darling basin region of southeastern Australia. The areas with significant centers of phylogenetic diversity and endemism were distributed differently for the five taxonomic groups studied (plant genera, fish, tree frogs, acacias, and eucalypts); no strong shared patterns across all five groups emerged. However, congruence was apparent between some groups in some parts of the basin. The northern region of the basin emerges from the analysis as a priority area for future conservation initiatives focused on eucalypts and tree frogs. The southern region is particularly important for conservation of the evolutionary heritage of plants and fishes.  相似文献   

11.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

12.
The campo rupestre sensu lato is among the most species-rich vegetation in the world, harbouring a high proportion of endemic species. We aimed to identify the processes that could generate a high level of phylogenetic diversity (PD) in campo rupestre for woody species and point out biodiversity hotspot areas which may provide additional information for conservation planning. We compiled a database of 2049 woody species from 185 community inventories. We calculated the evolutionary history using species richness (SR), PD, mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardised (ses.PDss, ses.MPD, ses.MNTD), evolutionary distinctiveness (ED), and biogeographically weighted evolutionary distinctiveness (BED). Cloud dwarf-forests had the highest SR, PD, MPD and ses.MPD and lowest MNTD, while rupestrian cerrado presented the highest ses.PD and ses.MNTD. All areas are important for conservation, but the intersections between the hotspots should receive special attention in future conservation actions. The grids identified as hotspots by three or more metrics were localized mainly in Espinhaço Range in Minas Gerais State and a further expansion of protected areas is required. Moreover, the intersections between the hotspots obtained by mean ED and ses.PD are concentrated in the rocky dwarf forest and rupestrian cerrado, with considerable conservation gaps. The degree of protection of campo rupestre was low with unprotected areas comprising 56% of the species. Our results show an urgent need for increasing protected areas of campo rupestre in order to avoid the loss of valuable, endemic species with unique evolutionary history.  相似文献   

13.
Aim This study aimed to detect distribution patterns and identify diversity hotspots for Chinese endemic woody seed plant species (CEWSPS). Location China. Methods Presence of 6885 CEWSPS throughout China was mapped by taking the Chinese administrative county as the basic spatial analysis unit. The diversity was measured with five indices: endemic richness (ER), weighted endemism (WE), phylogenetic diversity (PD), phylogenetic endemism (PE) and biogeographically weighted evolutionary distinctiveness (BED). Three levels of area (i.e. 1, 5 and 10% of China’s total land area) were used to identify hotspots, but the 5% level was preferred when both the total area of the hotspots identified and the diversity of CEWSPS reached by the hotspots were considered. Results Distribution patterns of CEWSPS calculated with the five indices are consistent with each other over the national extent. However, the hotspots do not show a high degree of consistency among the results derived from the five indices. Those identified with ER and PD are very similar, and so are those with WE and BED. In total, 20 hotspots covering 7.9% of China’s total land area were identified, among which 11 were identified with all the five indices, including the Hengduan Mountains, Xishuangbanna Region, Hainan Island, and eight mountainous areas located in east Chongqing and west Hubei, in east Yunnan and west Guangxi, in north Guangxi, south‐east Guizhou and south‐west Hunan, in north Guangdong and south Hunan, in south‐east Tibet, and in south‐east Hubei and north‐west Jiangxi. Taiwan Island was also identified as a major hotspot with WE, PE and BED. Main conclusions Hotspots of CEWSPS were identified with five indices considering both distributional and phylogenetic information. They cover most of the key areas of biodiversity defined by previous researchers using other approaches. This further verifies the importance of these areas for China’s biodiversity conservation.  相似文献   

14.
Aim This study aimed to identify the ‘centres of endemism’ of the Chinese spermatophyte flora in order to indirectly detect the locations of past glacial refugia. The role of these areas as places for plant survival (‘plant museums’) and/or areas for plant evolution and speciation (‘plant cradles’) was also assessed. Location China. Methods Distribution patterns of 555 plant endemic taxa, taken as a representative sample of the Chinese endemic flora, were mapped on a 1° × 1° latitude/longitude grid. For each grid cell, species richness (total count of species) and weighted richness (down‐weighting each species by the inverse of its range) were calculated. Grid cells within the top 5% of highest values of weighted richness were considered centres of endemism. Based on available information, all plant taxa included in this study were classified into palaeoendemics and neoendemics, and their distributional patterns were represented separately. Results Twenty areas of endemism were identified in central and southern China, roughly corresponding to mountain ranges, including the Hengduan and Daxue Mountains, the Yungui Plateau, central China Mountains, the Nanling Mountains, eastern China Mountains, and Hainan and Taiwan. Although almost all centres of endemism contained both palaeoendemic and neoendemic taxa, considerable differences in their respective numbers were recorded, with the majority of neoendemics on the eastern fringe of the Tibetan Plateau (Hengduan Mountains sensu lato) but more palaeoendemics towards the east. Main conclusions Owing to their varied topography, the mountainous regions of central and southern China have provided long‐term stable habitats, which allowed palaeoendemics to persist and facilitated the process of speciation. Contrasting patterns between the palaeoendemics and neoendemics within refugia might be attributable to the geological and tectonic history of specific areas. The eastern fringe of the Tibetan Plateau clearly constitutes the ‘evolutionary front’ of China, probably as a result of the uninterrupted uplift of the plateau since the late Neogene. In contrast, the tectonic stability of central and southern China during the Tertiary may have facilitated the persistence of relict plant lineages.  相似文献   

15.
Antje Burke 《Ecography》2005,28(2):171-180
This study investigated endemic plants in the Sperrgebiet in the succulent karoo – a global biodiversity hotspot in southern Africa. In order to develop hypotheses regarding the evolution of this endemic flora, the following questions were posed: 1) Are taxonomic patterns similar at different levels of taxonomic order? 2) Are adaptations of Sperrgebiet endemic taxa different from the overall flora? 3) Are adaptations different in related endemic and non‐endemic taxa? There is an over‐representation of species of Mesembryanthemaceae in the endemic flora, which is in accordance with patterns in the succulent karoo biome overall. The nearly 37% contribution of Mesembryanthemaceae to the endemic flora is, however, remarkably higher than elsewhere in the biome. The over‐representation of this family is not maintained at a higher level of taxonomic order, supporting the notion of recent speciation in this family. Regarding plant functional attributes, major differences between the endemic and non‐endemic flora exist. Compact leaf‐succulents with canopy stored, water‐dispersed seeds, as well as bulbs and shrubby leaf‐succulents predominate the endemic flora. Differences in reproductive (seed storage and dispersal distance) and growth form attributes between the endemic and non‐endemic flora were largely influenced by phylogenetic history. Minutism (plant height <10 cm) was favoured by many endemic plants, but this was not only influenced by phylogenetic factors. Two hypotheses emerged from these observations: 1) the evolution of minutism is largely driven by external factors in the Sperrgebiet, and 2) external factors and phylogenetic history are likely of equal importance in the development of the Sperrgebiet endemic flora.  相似文献   

16.

Aim

Floristic and faunal diversity fall within species assemblages that can be grouped into distinct biomes or ecoregions. Understanding the origins of such biogeographic assemblages helps illuminate the processes shaping present‐day diversity patterns and identifies regions with unique or distinct histories. While the fossil record is often sparse, dated phylogenies can provide a window into the evolutionary past of these regions. Here, we present a novel phylogenetic approach to investigate the evolutionary origins of present‐day biogeographic assemblages and highlight their conservation value.

Location

Southern Africa.

Methods

We evaluate the evolutionary turnover separating species clusters in space at different time slices to determine the phylogenetic depth at which the signal for their present‐day structure emerges. We suggest present‐day assemblages with distinct evolutionary histories might represent important units for conservation. We apply our method to the vegetation of southern Africa using a dated phylogeny of the woody flora of the region and explore how the evolutionary history of vegetation types compares to common conservation currencies, including species richness, endemism and threat.

Results

We show the differentiation of most present‐day vegetation types can be traced back to evolutionary splits in the Miocene. The woody flora of the Fynbos is the most evolutionarily distinct, and thus has deeper evolutionary roots, whereas the Savanna and Miombo Woodland show close phylogenetic affinities and likely represent a more recent separation. However, evolutionarily distinct phyloregions do not necessarily capture the most unique phylogenetic diversity, nor are they the most species‐rich or threatened.

Main conclusions

Our approach complements analyses of the fossil record and serves as a link to the history of diversification, migration and extinction of lineages within biogeographic assemblages that is separate from patterns of species richness and endemism. Our analysis reveals how phyloregions capture conservation value not represented by traditional biodiversity metrics.
  相似文献   

17.
This paper provides a synopsis of the Chilean Asteraceae genera according to the most recent classification. Asteraceae is the richest family within the native Chilean flora, with a total of 121 genera and c . 863 species, currently classified in 18 tribes. The genera are distributed along the whole latitudinal gradient in Chile, with a centre of richness at 33°–34° S. Almost one-third of the genera show small to medium-small ranges of distribution, while two-thirds have medium-large to large latitudinal ranges of distribution. Of the 115 mainland genera, 46% have their main distribution in the central Mediterranean zone between 27°–37° S. Also of the mainland genera, 53% occupy both coastal and Andean environments, while 33% can be considered as strictly Andean and 20% as strictly coastal genera. The biogeographical analysis of relationships allows the distinction of several floristic elements and generalized tracks: the most marked floristic element is the Neotropical, followed by the antitropical and the endemic element. The biogeographical analysis provides important insights into the origin and evolution of the Chilean Asteraceae flora. The presence of many localized and endemic taxa has direct conservation implications.  相似文献   

18.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

19.
Large‐scale habitat destruction and climate change result in the non‐random loss of evolutionary lineages, reducing the amount of evolutionary history represented in ecological communities. Yet, we have limited understanding of the consequences of evolutionary history on the structure of food webs and the services provided by biological communities. Drawing on 11 years of data from a long‐term plant diversity experiment, we show that evolutionary history of plant communities – measured as phylogenetic diversity – strongly predicts diversity and abundance of herbivorous and predatory arthropods. Effects of plant species richness on arthropods become stronger when phylogenetic diversity is high. Plant phylogenetic diversity explains predator and parasitoid richness as strongly as it does herbivore richness. Our findings indicate that accounting for evolutionary relationships is critical to understanding the severity of species loss for food webs and ecosystems, and for developing conservation and restoration policies.  相似文献   

20.
The earth is facing a worldwide decline in biodiversity, with land-use change identified as one of the most important drivers. There is evidence that the loss of diversity has a significant impact on ecosystem functioning. Earlier research focused on species richness, but more recent, functional and phylogenetic diversity came into the picture as the stronger determinants of ecosystem processes. The effects of increasing land-use intensity on functional (FD) and phylogenetic diversity (PD), however, are still poorly understood. We studied how FD and PD are affected by land-use intensity in temperate plant communities. Our results show that land-use intensity has a clear impact on species richness, but also affects functional and phylogenetic diversity. Intensive agricultural areas fail to support high and sustainable levels of functional and phylogenetic diversity. These results highlight the need for the protection of biodiversity in nature reserves and the conservation of areas with extensive agricultural practices. Because species richness may influence the measures of functional and phylogenetic diversity, we compared the observed FD and PD values with random values generated with a matrix-swap null model. The observed discrepancy between species loss and the loss of FD and PD calls for an integrated approach to biodiversity conservation, in which the different components of biodiversity are considered together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号