首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers.  相似文献   

3.
Recent demonstrations of the role of plant–soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long‐term consequences of plant–soil interactions for above‐belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one‐time additions of soil biota and plant seeds alter soil‐borne nematode and plant community composition in semi‐natural grassland for 20 years. Over time, aboveground and belowground community composition became increasingly correlated, suggesting an increasing connectedness of soil biota and plants. We conclude that the initial composition of not only plant communities, but also soil communities has a long‐lasting impact on the trajectory of community assembly.  相似文献   

4.
Soil nitrogen (N) and phosphorus (P) contents, and soil acidification have greatly increased in grassland ecosystems due to increased industrial and agricultural activities. As major environmental and economic concerns worldwide, nutrient enrichment and soil acidification can lead to substantial changes in the diversity and structure of plant and soil communities. Although the separate effects of N and P enrichment on soil food webs have been assessed across different ecosystems, the combined effects of N and P enrichment on multiple trophic levels in soil food webs have not been studied in semiarid grasslands experiencing soil acidification. Here we conducted a short‐term N and P enrichment experiment in non‐acidified and acidified soil in a semiarid grassland on the Mongolian Plateau. We found that net primary productivity was not affected by N or P enrichment alone in either non‐acidified or acidified soil, but was increased by combined N and P enrichment in both non‐acidified and acidified soil. Nutrient enrichment decreased the biomass of most microbial groups in non‐acidified soil (the decrease tended to be greatest with combined N and P enrichment) but not in acidified soil, and did not affect most soil nematode variables in non‐acidified or acidified soil. Nutrient enrichment also changed plant and microbial community structure in non‐acidified but not in acidified soil, and had no effect on nematode community structure in non‐acidified or acidified soil. These results indicate that the responses to short‐term nutrient enrichment were weaker for higher trophic groups (nematodes) than for lower trophic groups (microorganisms) and primary producers (plants). The findings increase our understanding of the effects of nutrient enrichment on multiple trophic levels of soil food webs, and highlight that soil acidification, as an anthropogenic stressor, reduced the responses of plants and soil food webs to nutrient enrichment and weakened plant–soil interactions.  相似文献   

5.
Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8‐ and 14‐year‐old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California—coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and Oregon white oak (Q. garryana). Although impacts varied somewhat by species and experiment, herbivory by black‐tailed deer (Odocoileus hemionus columbianus) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus and Peromyscus maniculatus) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees.  相似文献   

6.
This investigation has examined the origin of the molecular recognition associated with the interaction of monoclonal IgG2's with terpyridine‐based ligands immobilized onto agarose‐derived chromatographic adsorbents. Isothermal titration calorimetric (ITC) methods have been employed to acquire thermodynamic data associated with the IgG2‐ligand binding. These ITC investigations have documented that different enthalpic and entropic processes are involved depending on the nature of the chemical substituents in the core structure of the terpyridinyl moiety. In addition, molecular docking studies have been carried out with IgG2 structures with the objective to identify possible ligand binding sites and key interacting amino acid residues. These molecular docking experiments with the different terpyridine‐based ligands have shown that all of the examined ligands can potentially undergo favorable interactions with a site located within the Fab region of the IgG2. However, another favorable binding site was also identified from the docking poses to exist within the Fc region of the IgG2 for some, but not all, of the ligands studied. These investigations have provided a basis to elucidate the unique binding properties and chromatographic behaviors shown by several substituted terpyridine ligands in their interaction with IgGs of different isotype. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号