首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   

2.
Abstract Disturbances often lead to changes in average values of community properties; however, disturbances can also affect the predictability of a community's response. We performed a meta-analysis to determine how response predictability, defined as among-replicate variance in diversity and community abundance, is affected by species removals, species invasions, nutrient addition, temperature increase, and habitat loss/fragmentation, and we further determined whether response predictability differed according to habitat and trophic role. Species removals and nutrient addition decreased response predictability, while species invasions increased response predictability. In aquatic habitats, disturbances generally led to a decrease in response predictability, whereas terrestrial habitats showed no overall change in response predictability, suggesting that differences in food web and ecosystem structure affect how communities respond to disturbance. Producers were also more likely to show decreases in response predictability, particularly following species removals, highlighting widespread destabilizing effects of species loss at the producer level. Overall, our results show that whether disturbances cause changes in response predictability is highly contingent on disturbance type, habitat, and trophic role. The nature of changes in response predictability-for example, strong decreases following species invasions and increases following species removals-will likely play a major role in how communities recover from disturbance.  相似文献   

3.
Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century‐old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non‐native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole‐lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha?1. Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America.  相似文献   

4.
With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non‐significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.  相似文献   

5.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

6.
The risk of aquatic invasions in the Arctic is expected to increase with climate warming, greater shipping activity and resource exploitation in the region. Planktonic and benthic marine aquatic invasive species (AIS) with the greatest potential for invasion and impact in the Canadian Arctic were identified and the 23 riskiest species were modelled to predict their potential spatial distributions at pan‐Arctic and global scales. Modelling was conducted under present environmental conditions and two intermediate future (2050 and 2100) global warming scenarios. Invasion hotspots—regions of the Arctic where habitat is predicted to be suitable for a high number of potential AIS—were located in Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas, suggesting that these regions could be more vulnerable to invasions. Globally, both benthic and planktonic organisms showed a future poleward shift in suitable habitat. At a pan‐Arctic scale, all organisms showed suitable habitat gains under future conditions. However, at the global scale, habitat loss was predicted in more tropical regions for some taxa, particularly most planktonic species. Results from the present study can help prioritize management efforts in the face of climate change in the Arctic marine ecosystem. Moreover, this particular approach provides information to identify present and future high‐risk areas for AIS in response to global warming.  相似文献   

7.
Global patterns of plant diversity and floristic knowledge   总被引:10,自引:0,他引:10  
Aims We present the first global map of vascular plant species richness by ecoregion and compare these results with the published literature on global priorities for plant conservation. In so doing, we assess the state of floristic knowledge across ecoregions as described in floras, checklists, and other published documents and pinpoint geographical gaps in our understanding of the global vascular plant flora. Finally, we explore the relationships between plant species richness by ecoregion and our knowledge of the flora, and between plant richness and the human footprint – a spatially explicit measure of the loss and degradation of natural habitats and ecosystems as a result of human activities. Location Global. Methods Richness estimates for the 867 terrestrial ecoregions of the world were derived from published richness data of c. 1800 geographical units. We applied one of four methods to assess richness, depending on data quality. These included collation and interpretation of published data, use of species–area curves to extrapolate richness, use of taxon‐based data, and estimates derived from other ecoregions within the same biome. Results The highest estimate of plant species richness is in the Borneo lowlands ecoregion (10,000 species) followed by nine ecoregions located in Central and South America with ≥ 8000 species; all are found within the Tropical and Subtropical Moist Broadleaf Forests biome. Among the 51 ecoregions with ≥ 5000 species, only five are located in temperate regions. For 43% of the 867 ecoregions, data quality was considered good or moderate. Among biomes, adequate data are especially lacking for flooded grasslands and flooded savannas. We found a significant correlation between species richness and data quality for only a few biomes, and, in all of these cases, our results indicated that species‐rich ecoregions are better studied than those poor in vascular plants. Similarly, only in a few biomes did we find significant correlations between species richness and the human footprint, all of which were positive. Main conclusions The work presented here sets the stage for comparisons of degree of concordance of plant species richness with plant endemism and vertebrate species richness: important analyses for a comprehensive global biodiversity strategy. We suggest: (1) that current global plant conservation strategies be reviewed to check if they cover the most outstanding examples of regions from each of the world's major biomes, even if these examples are species‐poor compared with other biomes; (2) that flooded grasslands and flooded savannas should become a global priority in collecting and compiling richness data for vascular plants; and (3) that future studies which rely upon species–area calculations do not use a uniform parameter value but instead use values derived separately for subregions.  相似文献   

8.
Increased frequency of disturbances and anthropogenic activities are predicted to have a devastating impact on coral reefs that will ultimately change the composition of reef associated fish communities. We reviewed and analysed studies that document the effects of disturbance‐mediated coral loss on coral reef fishes. Meta‐analysis of 17 independent studies revealed that 62% of fish species declined in abundance within 3 years of disturbances that resulted in >10% decline in coral cover. Abundances of species reliant on live coral for food and shelter consistently declined during this time frame, while abundance of some species that feed on invertebrates, algae and/or detritus increased. The response of species, particularly those expected to benefit from the immediate loss of coral, is, however, variable and is attributed to erratic replenishment of stocks, ecological versatility of species and sublethal responses, such as changes in growth, body condition and feeding rates. The diversity of fish communities was found to be negatively and linearly correlated to disturbance‐mediated coral loss. Coral loss >20% typically resulted in a decline in species richness of fish communities, although diversity may initially increase following small declines in coral cover from high coverage. Disturbances that result in an immediate loss of habitat complexity (e.g. severe tropical storms), have a greater impact on fishes from all trophic levels, compared with disturbances that kill corals, but leave the reef framework intact (e.g. coral bleaching and outbreaks of Acanthaster planci). This is most evident among small bodied species and suggests the long‐term consequences of coral loss through coral bleaching and crown‐of‐thorn starfish outbreaks may be much more substantial than the short‐term effects currently documented.  相似文献   

9.
Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%–18% significantly lower inside PAs than outside them. Invasive species are rare in long‐established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14–55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native biodiversity.  相似文献   

10.
Aim The world's population is urbanizing, yet relatively little is known about the ecology of urban areas. As the largest metropolitan area in the USA, New York City is an ideal location to study the effects of urbanization. Here, we aim to produce a better understanding of the state of the research for species richness of flora and fauna across the New York metropolitan region. Location New York metropolitan region, USA. Methods We conducted a review of the published and grey literature, in which we targeted studies of species richness, and categorized each study by habitat, location and taxonomic group. Results We found 79 studies reporting location‐specific species richness data, resulting in 261 location‐taxonomic group records. Of these, 26 records had data from multiple time periods; 17 showed decreases in species richness, six reported increases and three showed stable species richness. Of these 26 records, most declines were attributed to anthropogenic causes, such as habitat loss/degradation and invasive species, while most increases reflected recovery from major habitat loss or increases in exotic species. Overall, most records (84) were terrestrial, followed by those in freshwater (72) and mixed habitats (61). When parsed by taxonomic group, the most commonly studied groups were plants (76) and mammals (48). Main conclusions In general, we discovered fewer studies than expected reporting species richness, especially studies reporting species richness for more than one point in time. Most studies that did contain data over time reported declines in species richness, while several studies reporting increasing or stable species richness reflected increases in exotic species. This survey provides a crucial first step in establishing baseline ecological knowledge for the New York metropolitan region that should help prioritize areas for protection, research and development. Furthermore, this research provides insights into the impacts of urbanization across the USA and beyond and should help establish similar frameworks for ecological understanding for other metropolitan regions throughout the world.  相似文献   

11.
The continuous decline of biodiversity is determined by the complex and joint effects of multiple environmental drivers. Still, a large part of past global change studies reporting and explaining biodiversity trends have focused on a single driver. Therefore, we are often unable to attribute biodiversity changes to different drivers, since a multivariable design is required to disentangle joint effects and interactions. In this work, we used a meta‐regression within a Bayesian framework to analyze 843 time series of population abundance from 17 European amphibian and reptile species over the last 45 years. We investigated the relative effects of climate change, alien species, habitat availability, and habitat change in driving trends of population abundance over time, and evaluated how the importance of these factors differs across species. A large number of populations (54%) declined, but differences between species were strong, with some species showing positive trends. Populations declined more often in areas with a high number of alien species, and in areas where climate change has caused loss of suitability. Habitat features showed small variation over the last 25 years, with an average loss of suitable habitat of 0.1%/year per population. Still, a strong interaction between habitat availability and the richness of alien species indicated that the negative impact of alien species was particularly strong for populations living in landscapes with less suitable habitat. Furthermore, when excluding the two commonest species, habitat loss was the main correlate of negative population trends for the remaining species. By analyzing trends for multiple species across a broad spatial scale, we identify alien species, climate change, and habitat changes as the major drivers of European amphibian and reptile decline.  相似文献   

12.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

13.
Aim Broad‐scale spatial variation in species richness relates to climate and physical heterogeneity but human activities may be changing these patterns. We test whether climate and heterogeneity predict butterfly species richness regionally and across Canada and whether these relationships change in areas of human activity. Location Canada. Methods We modelled the ranges of 102 butterfly species using genetic algorithms for rule‐set production (GARP). We then measured butterfly species richness and potentially important aspects of human activity and the natural environment. These were included in a series of statistical models to determine which factors are likely to affect butterfly species richness in Canada. We considered patterns across Canada, within predominantly natural areas, human‐dominated areas and particular ecozones. We examined independent observations of butterfly species currently listed under Canada's endangered species legislation to test whether these were consistent with findings from statistical models. Results Growing season temperature is the main determinant of butterfly species richness across Canada, with substantial contributions from habitat heterogeneity (measured using elevation). Only in the driest areas does precipitation emerge as a leading predictor of richness. The slope of relationships between all of these variables and butterfly species richness becomes shallower in human‐dominated areas, but butterfly richness is still highest there. Insecticide applications, habitat loss and road networks reduce butterfly richness in human‐dominated areas, but these effects are relatively small. All of Canada's at‐risk butterfly species are located in these human‐dominated areas. Main conclusions Temperature affects butterfly species richness to a greater extent than habitat heterogeneity at fine spatial scales and is generally far more important than precipitation, supporting both the species richness–energy and habitat heterogeneity hypotheses. Human activities, especially in southern Canada, appear to cause surprisingly consistent trends in biotic homogenization across this region, perhaps through range expansion of common species and loss of range‐restricted species.  相似文献   

14.
Aim To investigate explanations for the maintenance of a positive spatial species richness–human population density correlation at broad scales, despite the negative impact of humans on species richness. These are (hypotheses 1–4): (1) human activities that create a habitat mosaic and (2) a more favourable climate, and (3) adequate conservation measures (e.g. sufficient natural habitat), maintain the positive species richness–human density correlation; or (4) the full range of human densities decrease the slope of the correlation without changing its form. Location South Africa. Methods Avian species richness data from atlas distribution maps and human population density data derived from 2001 census results were converted to a quarter‐degree resolution. We investigated the number of land transformation types (anthropogenic habitat heterogeneity), irrigated area (increasing productivity), and other covarying factors (e.g. primary productivity) as predictors of species richness. We compared species richness–human density relationships among regions with different amounts of natural habitat, and investigated whether the full range of human densities decrease species richness in relation to primary productivity. Results Hypotheses 1, 2 and 3 were supported. Human densities and activities that increase habitat heterogeneity and productivity are important beneficial factors to common species, but not to rare species. The species richness–human density relationship persists only at low land transformation levels, and no significant relationship exists at higher levels. For common species, the relationship becomes non‐significant at lower land transformation levels than for rare species. Main conclusions The persistence of the species richness–human density relationship depends mostly on the amount of remaining natural habitat. In addition, certain human activities benefit especially common species. Common species seem to be more flexible than rare species in response to human activity and habitat loss.  相似文献   

15.
Aim Biodiversity patterns along altitudinal gradients are less studied in aquatic than terrestrial systems, even though aquatic sites provide a more homogeneous environment independent of moisture constraints. We studied the altitudinal species richness pattern for planktonic rotifers in freshwater lakes and identified the environmental predictors for which altitude is a proxy. Location Two hundred and eighteen lakes of Trentino–South Tyrol (Italy) in the eastern Alps; lakes covered 98% (range 65–2960 m above sea level) of the altitudinal gradient in the Alps. Methods We performed: (1) linear regression between species richness and altitude to evaluate the general pattern, (2) multiple linear regression between species richness and environmental predictors excluding altitude to identify the most important predictors, and (3) linear regression between the residuals of the best model of step (2) and altitude to investigate any additional explanatory power of altitude. Selection of environmental predictors was based on limnological importance and non‐parametric Spearman correlations. We applied ordinary least squares regression, generalized linear, and generalized least squares modelling to select the most statistically appropriate model. Results Rotifer species richness showed a monotonic decrease with altitude independent of scale effects. Species richness could be explained (R2= 51%) by lake area as a proxy for habitat diversity, reactive silica and total phosphorus as proxies for productivity, water temperature as a proxy for energy, nitrate as a proxy for human influence and north–south and east–west directions as covariates. These predictors completely accounted for the species richness–altitude pattern, and altitude had no additional effect on species richness. Main conclusions The linear decrease of species richness along the altitudinal gradient was related to the interplay of habitat diversity, productivity, heat content and human influence. These factors are the same in terrestrial and aquatic habitats, but the greater environmental stability of aquatic systems seems to favour a linear pattern.  相似文献   

16.
Evaluating impacts to biodiversity requires ecologically informed comparisons over sufficient time spans. The vulnerability of coastal ecosystems to anthropogenic and climate change‐related impacts makes them potentially valuable indicators of biodiversity change. To evaluate multidecadal change in biodiversity, we compared results from intertidal surveys of 13 sandy beaches conducted in the 1970s and 2009–11 along 500 km of coast (California, USA). Using a novel extrapolation approach to adjust species richness for sampling effort allowed us to address data gaps and has promise for application to other data‐limited biodiversity comparisons. Long‐term changes in species richness varied in direction and magnitude among beaches and with human impacts but showed no regional patterns. Observed long‐term changes in richness differed markedly among functional groups of intertidal invertebrates. At the majority (77%) of beaches, changes in richness were most evident for wrack‐associated invertebrates suggesting they have disproportionate vulnerability to impacts. Reduced diversity of this group was consistent with long‐term habitat loss from erosion and sea level rise at one beach. Wrack‐associated species richness declined over time at impacted beaches (beach fill and grooming), despite observed increases in overall intertidal richness. In contrast richness of these taxa increased at more than half (53%) of the beaches including two beaches recovering from decades of off‐road vehicle impacts. Over more than three decades, our results suggest that local scale processes exerted a stronger influence on intertidal biodiversity on beaches than regional processes and highlight the role of human impacts for local spatial scales. Our results illustrate how comparisons of overall biodiversity may mask ecologically important changes and stress the value of evaluating biodiversity change in the context of functional groups. The long‐term loss of wrack‐associated species, a key component of sandy beach ecosystems, documented here represents a significant threat to the biodiversity and function of coastal ecosystems.  相似文献   

17.
Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity''s Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world''s terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species.  相似文献   

18.
Many species, including most amphibians, undergo an ontogenetic niche shift (ONS) from an aquatic larval stage to a terrestrial adult stage. We use the ratio of aquatic to terrestrial habitat in a landscape as a tool to understand the influence of landscape context on the population growth of ONS species. The aquatic to terrestrial ratio (ATR) of habitats can be viewed as an analog to the influence of resource ratios on the population growth of consumers and depends on the degree to which each habitat type limits the growth of a given population. Population growth rates of shorter‐lived species tend to be more limited by demographic rates in early (aquatic) life stages. As a result, increasing the ATR should lead to a higher total population size in the landscape (and higher densities in the terrestrial habitat), but have little influence on the density of individuals in any given aquatic habitat. Alternatively, population growth rates of longer‐lived species tend to be more limited by demographic rates in later (terrestrial) life stages and increasing the ATR should have little influence on the total population size in the landscape, but decrease the density of individuals in any given aquatic habitat. We show that among‐landscape variation in the breeding‐pond densities of three widespread amphibians with contrasting life histories is consistent with this framework. Within‐pond densities of Pseudacris crucifer, a species with short‐lived adults, were not influenced by ATR, whereas within‐pond densities of Hyla versicolor, a longer‐lived member of the same family (Hylidae), declined as ATR increased. Ambystoma maculatum, a long‐lived salamander, also had lower densities in ponds with higher ATR. Because A. maculatum larvae are important predators in ponds, we use structural equation modeling to show that landscape context (ATR) can moderate community structure via direct (amphibian abundances) and indirect (prey species richness) effects.  相似文献   

19.
Disturbances, such as fire and grazing, are often claimed to facilitate plant species richness and plant invasions in particular, although empirical evidence is contradictory. We conducted a meta‐analysis to synthesize the literature on how non‐native plant species are affected by disturbances. We explored whether the observed impact of disturbance on non‐native plant communities is related to its type and frequency, to habitat type, study approach (observational or experimental), and to the temporal and spatial scales of the study. To put the results in a broader context, we also conducted a set of parallel analyses on a data set involving native plant species. The diversity and abundance of non‐native plant species were significantly higher at disturbed sites than at undisturbed sites, while the diversity and abundance of native plant species did not differ between the two types of sites. The effect of disturbance on non‐native plant species depended on the measure used to evaluate the impact (species diversity or abundance) and on disturbance type, with grazing and anthropogenic disturbances leading to higher diversity and abundance of non‐native plant species than other disturbance types examined. The impact of disturbance on non‐natives was also associated with study approach, habitat type and temporal scale, but these factors covaried with disturbance type, complicating the interpretation of the results. Overall, our results indicate that disturbance has a positive impact particularly on non‐native plant species (at least when they are already present in the community), and that the strength of this impact depends primarily on the disturbance type. Synthesis Empirical evidence of the effect of disturbances on plant species richness is contradictory. Here we use a meta‐analysis to synthesize the published literature on how different types of disturbances influence the diversity and abundance of plant species, focusing in particular on non‐native plants. Our study supports the hypothesis that disturbances generally facilitate the diversity and abundance of non‐native plant species, although the strength of this facilitation depends primarily on the disturbance type.  相似文献   

20.
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context‐dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non‐native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号