首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Rare species typically contribute more to functional diversity than common species. However, humans have altered the occupancy and abundance patterns of many species—the basis upon which we define “rarity.” Here, we use a globally unique dataset from hydrothermal vents—an untouched ecosystem—to test whether rare species over‐contribute to functional diversity.

Location

Juan de Fuca Ridge hydrothermal vent fields, Northeast Pacific Ocean.

Methods

We first conduct a comprehensive review to set up expectations for the relative contributions of rare and common species to functional diversity. We then quantify the rarity and commonness of 37 vent species with relevant trait information to assess the relationship between rarity and functional distinctiveness—a measure of the uniqueness of the traits of a species relative to traits of coexisting species. Next, we randomly assemble communities to test whether rare species over‐contribute to functional diversity in artificial assemblages ranging in species richness. Then, we test whether biotic interactions influence functional diversity contributions by comparing the observed contribution of each species to a null expectation. Finally, we identify traits driving functional distinctiveness using a distance‐based redundancy analysis.

Results

Across functional diversity metrics and species richness levels, we find that both rare and common species can contribute functional uniqueness. Some species always offer unique trait combinations, and these species host bacterial symbionts and provide habitat complexity. Moreover, we find that contributions of species to functional diversity may be influenced by biotic interactions.

Main conclusions

Our findings show that many common species make persistent, unique contributions to functional diversity. Thus, it is key to consider whether the abundance and occupancy of species have been reduced, relative to historical baselines, when interpreting the contributions of rare species to functional diversity. Our work highlights the importance of testing ecological theory in ecosystems unaffected by human activities for the conservation of biodiversity.  相似文献   

2.

Motivation and aim

Mapping the spatial distribution of biodiversity is critical for understanding its fundamental drivers (e.g. speciation, environmental filtering) as well as for conservation assessment. An important dimension of this topic is how the distributions of subsets of species contribute to the overall distribution of biodiversity. Although studies have previously investigated the role of geographically common and rare species in determining these patterns, their respective contributions appear to vary between studies. Knowing which species contribute disproportionately to the spatial distribution of biodiversity enables the identification of key indicator species for biodiversity assessments across large areas and is important for prioritising areas for conservation actions. An extensive review of the literature was carried out to synthesise research on how geographic rarity contributes to spatial patterns of biodiversity. We identify potential explanations for the discrepancies in findings between studies and identify opportunities for further research.

Results

Many studies on the contribution of geographic commonness and rarity to the spatial distribution of biodiversity focus on species richness. A prevalent view is that common (widespread) species contribute disproportionately, although this is not ubiquitous across studies due to factors such as the geographic extent from which relative rarity is quantified. We identify research pathways that will further improve our knowledge of how geographically common and rare species shape the spatial distribution of biodiversity including the impact of spatial scale on species contributions and the incorporation of biodiversity components beyond taxonomic alpha diversity, that is functional and phylogenetic diversity.

Main conclusions

Future research should incorporate multiple biodiversity components and model scale dependency. This will further our knowledge on the underlying processes that shape the spatial variation of biodiversity across the planet and help inform biological surveys and conservation activities.  相似文献   

3.
Bird communities in Tropical forests have high rate of rare species, but only recently some studies suggested their disproportional role for the overall functional diversity. We investigated data from bird communities monitored annually using point counts over ten years in Iguassu National Park, that is a large and protected area in the southern portion of the Atlantic Forest in Brazil. We aimed (1) to determine the rare and dominant species in the community based on their abundance over time; (2) to evaluate the impact of each class of rarity on the overall functional volume of the community; (3) to investigate the pattern of occupancy of the trait space filled by each dominance class, and (4) to assess the disparity in functional trait composition between classes of rarity. We defined dominant, intermediate, and rare species in communities using cluster analysis and data of relative abundance of species in five sections of 1-km in the forest interior. The number of clusters was defined in accordance with the silhouette criterion measures of cohesion and separation that range from −1 to 1, with values > 0.5 indicating high-quality clusters. Among total 138 bird species recorded, 107 were rare, 26 intermediates, and 5 dominants. Our data corroborate a functional disproportional importance of rare bird species in the community considering the functional space (FRic), but functional dispersion (FDis) was not significantly different between the rare and intermediate species. In fact, there is a large overlap of the functional volume occupied by rare in relation to dominant/intermediate species. The niche space occupied by rare species covers most of the space occupied by intermediate and dominant species. The low representativeness of functional turnover indicates that few functions are unique to the classes of higher dominance. Our data suggest the importance of rare bird species to the overall functional diversity but also highlights the potential use of dominants/intermediates species as indicators to select important forests areas for conservation, as certain forest fragments. Through these most abundant species it would be possible to assess which functions are heaviest in abundance, becoming core functions, in the context of each independent forest fragment.  相似文献   

4.
Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.  相似文献   

5.
稀有种不仅影响群落的物种多度分布格局, 同时也是α多样性的重要贡献者。本研究主要通过加性分配和Fortran软件的RAD程序包拟合的方法, 研究了甘南亚高寒草甸不同坡向物种多样性及多度分布格局的变化, 分析了物种多度分布格局及其α多样性的变化特征, 确定了稀有种在物种多度分布格局中的相对贡献。结果表明: (1)在南坡到北坡的变化中, 环境因子差异比较明显, 其中, 土壤全磷、有机碳、速效磷、碳氮比及含水量呈递增趋势; 土壤氮磷比和pH值呈递减趋势; 土壤全氮在西坡显著低于其他坡向, 而速效氮在所有坡向上差异不显著。(2)稀有种对群落物种多样性的影响在南-北坡向梯度上依次增大, 去除稀有种的影响在各坡向均高于去除非稀有种, 可见, 稀有种在甘南亚高寒草甸物种多样性中的相对贡献高于非稀有种。(3)各坡向的稀有种资源获取模式以随机分配占领模式(random fraction模型)为主, 而非稀有种则以生态位优先占领模式(geometric series模型)为主。由于稀有种有较大的扩散率, 在物种多样性较高的生态系统中, 物种之间的生态位重叠会更加明显, 从而抑制物种多样性的增加, 因此能达到维持原有物种多样性的目的。  相似文献   

6.
Increasing evidence is available for a positive effect of biodiversity on ecosystem productivity and standing biomass, also in highly diverse systems as tropical forests. Biodiversity conservation could therefore be a critical aspect of climate mitigation policies. There is, however, limited understanding of the role of individual species for this relationship, which could aid in focusing conservation efforts and forest management planning. This study characterizes the functional specialization and redundancy for 95% of all tree species (basal area weighted percentage) in a diverse tropical forest in the central Congo Basin and relates this to species' abundance, contribution to aboveground carbon, and maximum size. Functional characterization is based on a set of traits related to resource acquisition (wood density, specific leaf area, leaf carbon, nitrogen and phosphorus content, and leaf stable carbon isotope composition). We show that within both mixed and monodominant tropical forest ecosystems, the highest functional specialization and lowest functional redundancy are solely found in rare tree species and significantly more in rare species holding large‐sized individuals. Rare species cover the entire range of low and high functional redundancy, contributing both unique and redundant functions. Loss of species supporting functional redundancy could be buffered by other species in the community, including more abundant species. This is not the case for species supporting high functional specialization and low functional redundancy, which would need specific conservation attention. In terms of tropical forest management planning, we argue that specific conservation of large‐sized trees is imperative for long‐term maintenance of ecosystem functioning.  相似文献   

7.
Tommaso Zillio  Richard Condit 《Oikos》2007,116(6):931-940
We present a spatially-explicit generalization of Hubbell's model of community dynamics in which the assumption of neutrality is relaxed by incorporating dispersal limitation and habitat preference. In simulations, diversity and species abundances were governed by the rate at which new species were introduced (usually called 'speciation') and nearly unaffected by dispersal limitation and habitat preference. Of course, in the absence of species input, diversity is maintained solely by niche differences. We conclude that the success of the neutral model in predicting the abundance distribution has nothing to do with neutrality, but rather with the species-introduction process: when new species enter a community regularly as singletons, the typical J-shaped abundance distribution, with a long tail of rare species, is always observed, whether species differ in habitat preferences or not. We suggest that many communities are indeed driven by the introduction process, accounting for high diversity and rarity, and that species differences may be largely irrelevant for either.  相似文献   

8.
The biodiversity–ecosystem functioning (BEF) relationship is central in community ecology. Its drivers in competitive systems (sampling effect and functional complementarity) are intuitive and elegant, but we lack an integrative understanding of these drivers in complex ecosystems. Because networks encompass two key components of the BEF relationship (species richness and biomass flow), they provide a key to identify these drivers, assuming that we have a meaningful measure of functional complementarity. In a network, diversity can be defined by species richness, the number of trophic levels, but perhaps more importantly, the diversity of interactions. In this paper, we define the concept of trophic complementarity (TC), which emerges through exploitative and apparent competition processes, and study its contribution to ecosystem functioning. Using a model of trophic community dynamics, we show that TC predicts various measures of ecosystem functioning, and generate a range of testable predictions. We find that, in addition to the number of species, the structure of their interactions needs to be accounted for to predict ecosystem productivity.  相似文献   

9.
Prioritizing geographic areas for conservation attention is important – time and money are in short supply but endangered species are not – and difficult. One popular perspective highlights areas with many species found nowhere else ( Myers et al. 2000 ). Another identifies areas that contain species with fewer close relatives elsewhere ( Faith 1992 ). One might characterize the first as focusing on geographic, and the second on phylogenetic, rarity. To the extent that geographically rare species are at greater risk of extinction ( Gaston & Fuller 2009 ), and that phylogenetically rare species contribute disproportionally to overall biodiversity ( Crozier 1997 ), it would seem reasonable to formally integrate the two approaches. In this issue, Rosauer et al. (2009) do just that; their elegant combined metric pinpoints areas missed out when the two types of rarity are looked at in isolation.  相似文献   

10.
1.?We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2.?Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3.?Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i.e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i.e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4.?Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning of the entire ecological community is critically linked to the diversity of its component plants species.  相似文献   

11.
Conservation practitioners face difficult choices in apportioning limited resources between rare species (to ensure their existence) and common species (to ensure their abundance and ecosystem contributions). We quantified the opportunity costs of conserving rare species of migratory fishes in the context of removing dams and retrofitting road culverts across 1,883 tributaries of the North American Great Lakes. Our optimization models show that maximizing total habitat gains across species can be very efficient in terms of benefits achieved per dollar spent, but disproportionately benefits common species. Conservation approaches that target rare species, or that ensure some benefits for every species (i.e., complementarity) enable strategic allocation of resources among species but reduce aggregate habitat gains. Thus, small habitat gains for the rarest species necessarily come at the expense of more than 20 times as much habitat for common ones. These opportunity costs are likely to occur in many ecosystems because range limits and conservation costs often vary widely among species. Given that common species worldwide are declining more rapidly than rare ones within major taxa, our findings provide incentive for triage among multiple worthy conservation targets.  相似文献   

12.
Biodiversity‐ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real‐world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large‐scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large‐scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species‐abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species‐abundance distributions in nature.  相似文献   

13.
14.
Sasaki T  Lauenroth WK 《Oecologia》2011,166(3):761-768
A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity–stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning.  相似文献   

15.
Predicting whether, how, and to what degree communities recover from disturbance remain major challenges in ecology. To predict recovery of coral communities we applied field survey data of early recovery dynamics to a multi‐species integral projection model that captured key demographic processes driving coral population trajectories, notably density‐dependent larval recruitment. After testing model predictions against field observations, we updated the model to generate projections of future coral communities. Our results indicated that communities distributed across an island landscape followed different recovery trajectories but would reassemble to pre‐disturbed levels of coral abundance, composition, and size, thus demonstrating persistence in the provision of reef habitat and other ecosystem services. Our study indicates that coral community dynamics are predictable when accounting for the interplay between species life‐history, environmental conditions, and density‐dependence. We provide a quantitative framework for evaluating the ecological processes underlying community trajectory and characteristics important to ecosystem functioning.  相似文献   

16.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

17.
Ecological communities are composed of a few common and several rare species. Many studies have evaluated the shape of abundance distribution curves, but few studies have assessed the causes of rarity. Using a dataset of stream macroinvertebrates, we investigated whether the excess of rare species in three focal communities of stones in riffles were common 1) in other habitats at the same stream site and period of sampling (environment), 2) in other stream sites in the same habitat and period of sampling (space), and 3) in other years in the same stream site and habitat (time). We observed that around 28% of the rare species were common in other habitats (environment), stream sites (space) or years (time). Among the three factors, rarity was mostly explained by habitat type, whereas a significant portion of the rare species in riffles were common in pools, submerged roots of terrestrial plants or in partially submerged moss patches. This result suggests that the presence in non‐optimum habitat is a strong determinant of the rarity observed in natural communities and most rare species are due to sampling artifacts or accidentally sampled transient species.  相似文献   

18.
By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.  相似文献   

19.
Loss and fragmentation of natural habitats can lead to alterations of plant–animal interactions and ecosystems functioning. Insect herbivory, an important antagonistic interaction is expected to be influenced by habitat fragmentation through direct negative effects on herbivore community richness and indirect positive effects due to losses of natural enemies. Plant community changes with habitat fragmentation added to the indirect effects but with little predictable impact. Here, we evaluated habitat fragmentation effects on both herbivory and herbivore diversity, using novel hierarchical meta‐analyses. Across 89 studies, we found a negative effect of habitat fragmentation on abundance and species richness of herbivores, but only a non‐significant trend on herbivory. Reduced area and increased isolation of remaining fragments yielded the strongest effect on abundance and species richness, while specialist herbivores were the most vulnerable to habitat fragmentation. These fragmentation effects were more pronounced in studies with large spatial extent. The strong reduction in herbivore diversity, but not herbivory, indicates how important common generalist species can be in maintaining herbivory as a major ecosystem process.  相似文献   

20.
Land‐use intensification has consequences for biodiversity and ecosystem functioning, with various taxonomic groups differing widely in their sensitivity. As land‐use intensification alters habitat structure and resource availability, both factors may contribute to explaining differences in animal species diversity. Within the local animal assemblages the flying vertebrates, bats and birds, provide important and partly complementary ecosystem functions. We tested how bats and birds respond to land‐use intensification and compared abundance, species richness, and community composition across a land‐use gradient including forest, traditional agroforests (home garden), coffee plantations and grasslands on Mount Kilimanjaro, Tanzania. Furthermore, we asked how sensitive different habitat and feeding guilds of bats and birds react to land‐use intensification and the associated alterations in vegetation structure and food resource availability. In contrast to our expectations, land‐use intensification had no negative effect on species richness and abundance of all birds and bats. However, some habitat and feeding guilds, in particular forest specialist and frugivorous birds, were highly sensitive to land‐use intensification. Although the habitat guilds of both, birds and bats, depended on a certain degree of vegetation structure, total bat and bird abundance was mediated primarily by the availability of the respective food resources. Even though the highly structured southern slopes of Mount Kilimanjaro are able to maintain diverse bat and bird assemblages, the sensitivity of avian forest specialists against land‐use intensification and the dependence of the bat and bird habitat guilds on a certain vegetation structure demonstrate that conservation plans should place special emphasis on these guilds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号