首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra‐pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within‐pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra‐pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade‐off between male within‐pair paternity success and extra‐pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection.  相似文献   

2.
Fitness trade‐offs across episodes of selection and environments influence life‐history evolution and adaptive population divergence. Documenting these trade‐offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade‐offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual‐level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade‐offs. This analytical approach (Conditional Neutrality‐Antagonistic Pleiotropy, CNAP) identified genetic trade‐offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade‐offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA‐based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade‐offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade‐offs that took many generations to evolve.  相似文献   

3.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

4.
The effective population size (Ne) is a fundamental parameter in population genetics that influences the rate of loss of genetic diversity. Sexual selection has the potential to reduce Ne by causing the sex‐specific distributions of individuals that successfully reproduce to diverge. To empirically estimate the effect of sexual selection on Ne, we obtained fitness distributions for males and females from an outbred, laboratory‐adapted population of Drosophila melanogaster. We observed strong sexual selection in this population (the variance in male reproductive success was ~14 times higher than that for females), but found that sexual selection had only a modest effect on Ne, which was 75% of the census size. This occurs because the substantial random offspring mortality in this population diminishes the effects of sexual selection on Ne, a result that necessarily applies to other high fecundity species. The inclusion of this random offspring mortality creates a scaling effect that reduces the variance/mean ratios for male and female reproductive success and causes them to converge. Our results demonstrate that measuring reproductive success without considering offspring mortality can underestimate Ne and overestimate the genetic consequences of sexual selection. Similarly, comparing genetic diversity among different genomic components may fail to detect strong sexual selection.  相似文献   

5.
Directional and stabilizing selection tend to deplete additive genetic variance. On the other hand, genetic variance in traits related to fitness could be retained through polygenic mutation, spatially varying selection, genotype-environment interaction, or antagonistic pleiotropy. Most estimates of genetic variance in fitness-related traits have come from laboratory studies, with few estimates of heritability made under natural conditions, particularly for longer lived organisms. Here I estimated additive genetic variance in life-history characters of a monocarpic herb, Ipomopsis aggregata, that lives for up to a decade. Experimental crosses yielded 229 full-sibships nested within 32 paternal half-sibships. More than 5000 offspring were planted as seeds into natural field sites and were followed in most cases through their entire life cycle. Survival showed substantial additive genetic variance (genetic coefficient of variation ≈ 54%). Small differences at seedling emergence were magnified over time, such that the genetic variability in survival was only detectable by tracking the success of offspring for several years starting from seed. In contrast to survival, reproductive traits such as flower number, seeds per flower, and age at flowering showed little or no genetic variability. Despite relatively high levels of additive genetic variation for some life-history characters, high environmental variance in survival resulted in very low heritabilities (0–9%) for all of these characters. Maternal effects were evident in seed mass and remained strong throughout the lengthy vegetative period. No negative genetic correlations between major components of female fitness were detected. Mean corolla width for a paternal family was, however, negatively correlated with the finite rate of increase based on female fitness. That negative correlation could help to maintain additive genetic variance in the face of strong selection through male function for wide corollas.  相似文献   

6.
How should fitness be measured to determine which phenotype or “strategy” is uninvadable when evolution occurs in a group‐structured population subject to local demographic and environmental heterogeneity? Several fitness measures, such as basic reproductive number, lifetime dispersal success of a local lineage, or inclusive fitness have been proposed to address this question, but the relationships between them and their generality remains unclear. Here, we ascertain uninvadability (all mutant strategies always go extinct) in terms of the asymptotic per capita number of mutant copies produced by a mutant lineage arising as a single copy in a resident population (“invasion fitness”). We show that from invasion fitness uninvadability is equivalently characterized by at least three conceptually distinct fitness measures: (i) lineage fitness, giving the average individual fitness of a randomly sampled mutant lineage member; (ii) inclusive fitness, giving a reproductive value weighted average of the direct fitness costs and relatedness weighted indirect fitness benefits accruing to a randomly sampled mutant lineage member; and (iii) basic reproductive number (and variations thereof) giving lifetime success of a lineage in a single group, and which is an invasion fitness proxy. Our analysis connects approaches that have been deemed different, generalizes the exact version of inclusive fitness to class‐structured populations, and provides a biological interpretation of natural selection on a mutant allele under arbitrary strength of selection.  相似文献   

7.
Consistently with the prediction that selection should deplete additive genetic variance ( VA ) in fitness, traits closely associated to fitness have been shown to exhibit low heritabilities ( h 2= VA /( VA + VR )). However, empirical data from the wild indicate that this is in fact due to increased residual variance ( VR ), rather than due to decreased additive genetic variance, but the studies in this topic are still rare. We investigated relationships between trait heritabilities, additive genetic variances, and traits' contribution to lifetime reproductive success (≈fitness) in a red-billed gull ( Larus novaehollandiae ) population making use of animal model analyses as applied to 15 female and 13 male traits. We found that the traits closely associated with fitness tended to have lower heritabilities than traits less closely associated with fitness. However, in contrast with the results of earlier studies in the wild, the low heritability of the fitness-related traits was not only due to their high residual variance, but also due to their low additive genetic variance. Permanent environment effects—integrating environmental effects experienced in early life as well as nonadditive genetic effects—on many traits were large, but unrelated to traits' importance for fitness.  相似文献   

8.
9.
In polygynous, sexually dimorphic species, sexual selection should be stronger in males than in females. Although this prediction extends to the effects of early development on fitness, few studies have documented early determinants of lifetime reproductive success in a natural mammal population. In this paper, we describe factors affecting the reproductive success of male and female red deer (Cervus elaphus) on the island of Rum, Scotland. Birthweight was a significant determinant of total lifetime reproductive success in males, with heavier-born males being more successful than lighter ones. In contrast, birthweight did not affect female reproductive success. High population density and cold spring temperatures in the year of birth decreased several components of fitness in females, but did not affect the breeding success of males. The results confirm the prediction that selection on a sexually dimorphic trait should be greater in males than in females, and explain the differential maternal expenditure between sons and daughters observed in red deer. Differences between the sexes in the effects of environmental and phenotypic variation on fitness may generate differences in the amount of heritable genetic variation underlying traits such as birthweight.  相似文献   

10.
Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.  相似文献   

11.
Antagonistic pleiotropy (AP) is a genetic trade‐off between different fitness components. In annual plants, a trade‐off between days to flower (DTF) and reproductive capacity often determines how many individuals survive to flower in a short growing season, and also influences the seed set of survivors. We develop a model of viability and fecundity selection informed by many experiments on the yellow monkeyflower, Mimulus guttatus, but applicable to many annual species. A viability/fecundity trade‐off maintains stable polymorphism under surprisingly general conditions. We also introduce both spatial heterogeneity and temporal stochasticity in environmental parameters. Neither is necessary for polymorphism, but spatial heterogeneity allows polymorphism while also generating the often observed non‐negative correlations in fitness components.  相似文献   

12.
Abstract Despite their importance in evolutionary biology, heritability and the strength of natural selection have rarely been estimated in wild populations of iteroparous species or have usually been limited to one particular event during an organism's lifetime. Using an animal-model restricted maximum likelihood and phenotypic selection models, we estimated quantitative genetic parameters and the strength of lifetime selection on parturition date and litter size at birth in a natural population of North American red squirrels, Tamiasciurus hudsonicus. Litter size at birth and parturition date had low heritabilities ( h2 = 0.15 and 0.16, respectively). We considered potential effects of temporal environmental covariances between phenotypes and fitness and of spatial environmental heterogeneity in estimates of selection. Selection favored early breeders and females that produced litter sizes close to the population average. Stabilizing selection on litter size at birth may occur because of a trade-off between number of offspring produced per litter and offspring survival or a trade-off between a female's fecundity and her future reproductive success and survival.  相似文献   

13.
The variance in fitness across population members can influence major evolutionary processes. In socially monogamous but genetically polygynandrous species, extra‐pair paternity (EPP) is widely hypothesized to increase the variance in male fitness compared to that arising given the socially monogamous mating system. This hypothesis has not been definitively tested because comprehensive data describing males’ apparent (social) and realized (genetic) fitness have been lacking. We used 16 years of comprehensive social and genetic paternity data for an entire free‐living song sparrow (Melospiza melodia) population to quantify and compare variances in male apparent and realized fitness, and to quantify the contribution of the variances in within‐pair reproductive success (WPRS) and extra‐pair reproductive success (EPRS) and their covariance to the variance in realized fitness. Overall, EPP increased the variance in male fitness by only 0–27% across different fitness and variance measures. This relatively small effect reflected the presence of socially unpaired males with zero apparent and low realized fitness, small covariance between WPRS and EPRS, and large variance in WPRS that was relatively unaffected by EPP. Therefore, although EPP altered individual males’ contributions to future generations, its impact on population‐level parameters such as the opportunity for selection and effective population size was limited.  相似文献   

14.
Sexual selection can act through variation in the number of social mates obtained, variation in mate quality, or variation in success at obtaining extra-pair fertilizations. Because within-pair fertilizations (WPF) and extra-pair fertilizations (EPF) are alternate routes of reproduction, they are additive, rather than multiplicative, components of fitness. We present a method for partitioning total variance in reproductive success (a measure of the opportunity for selection) when fitness components are both additive and multiplicative and use it to partition the variance into components that correspond to each mechanism of sexual selection. Computer simulations show that extra-pair fertilizations can either increase or decrease total variance, depending on the covariance between within-pair and extra-pair success. Simulations also suggest that for socially monogamous species, extra-pair fertilizations have a greater effect than variation in mate quality or pairing status on the opportunity for selection. Application of our model to data gathered for a population of red-winged blackbirds (Agelaius phoeniceus) indicates that most of the variance in male reproductive success was attributable to within-pair sources of variance. Nevertheless, extra-pair copulations increased the opportunity for selection because males varied both in the proportion of their social young that they sired and in the number of extra-pair mates that they obtained. Furthermore, large and positive covariances existed between the number of extra-pair mates a male obtained and both social pairing success and within-pair paternity, indicating that, in this population, males preferred as social mates also were preferred as extra-pair mates.  相似文献   

15.
Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male‐biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex‐specific strengths of selection, environmental sensitivities and genotype‐by‐environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex‐specific reductions in fitness components, genotype‐by‐environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype‐by‐environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations.  相似文献   

16.
Interactions between organisms are ubiquitous and have important consequences for phenotypes and fitness. Individuals can even influence those they never meet, if they have extended phenotypes that alter the environments others experience. North American red squirrels (Tamiasciurus hudsonicus) guard food hoards, an extended phenotype that typically outlives the individual and is usually subsequently acquired by non‐relatives. Hoarding by previous owners can, therefore, influence subsequent owners. We found that red squirrels breed earlier and had higher lifetime fitness if the previous hoard owner was a male. This was driven by hoarding behaviour, as males and mid‐aged squirrels had the largest hoards, and these effects persisted across owners, such that if the previous owner was male or died in mid‐age, subsequent occupants had larger hoards. Individuals can, therefore, influence each other's resource‐dependent traits and fitness without ever meeting, such that the past can influence contemporary population dynamics through extended phenotypes.  相似文献   

17.
Genetic variation for seedling and adult fitness components was measured under natural conditions to determine the relative importance of the seedling stage for lifetime fitness in Erigeron annuus. Variation in lifetime reproductive success can result from both the persistent effects of genetic variation expressed among seedlings and from variation in adult fitness components. Analysis of covariance was used to separate the stage specific from the cumulative effects of genetic variance expressed earlier in the life cycle. E. annuus produces seeds through apomixis, which allowed measurement of the fitness of replicate genotypes from germination through the entire life cycle. There were significant differences among genotypes for date of emergence, seedling size, survivorship and fecundity, but heritabilities were low, indicating slow response to selection. For all characters, environmental components of variance were one to two orders of magnitude larger than genetic variance components, resulting in broad sense heritabilities less than 0.1. For seedling size and fecundity, all of the genetic variance was in the form of genotype-environment interactions, often with large negative genetic correlations across environments. In contrast, genotypes differed in mean survivorship through one year, but there were no genotype-environment interactions for viability. Genetic differences in viability were primarily expressed as differences in overwinter survivorship. Genotype × environment interactions among sites and blocks were generated early in the life cycle while the genotype × environment interactions in response to competitive environment (open, annual cover, perennial cover) first appeared in adult fecundity. Genetic variation in lifetime fitness was not significant, despite a fourfold difference in mean fitness among genotypes.  相似文献   

18.
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

19.
Condition, defined as the amount of ‘internal resources’ an individual can freely allocate, is often assumed to be environmentally determined and to reflect an individual’s health and nutritional status. However, an additive genetic component of condition is possible if it ‘captures’ the genetic variance of many underlying traits as many fitness‐related traits appear to do. Yet, the heritability of condition can be low if selection has eroded much of its additive genetic variance, or if the environmental influences are strong. Here, we tested whether feather growth rate – presumably a condition‐dependent trait – has a heritable component, and whether variation in feather growth rate is related to variation in fitness. To this end, we utilized data from a long‐term population study of Siberian jays (Perisoreus infaustus), and found that feather growth rate, measured as the width of feather growth bars (GB), differed between age‐classes and sexes, but was only weakly related to variation in fitness as measured by annual and life‐time reproductive success. As revealed by animal model analyses, GB width was significantly heritable (h2 = 0.10 ± 0.05), showing that this measure of condition is not solely environmentally determined, but reflects at least partly inherited genetic differences among individuals. Consequently, variation in feather growth rates as assessed with ptilochronological methods can provide information about heritable genetic differences in condition.  相似文献   

20.
We estimated broad‐sense heritabilities (H2) of 13 female and seven male life‐history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi‐natural conditions in a large outdoor population cage. The analysis was based on full‐sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host‐plant preference as well as in male body mass and mobility. Apart from host‐plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H2. LRS itself exhibited significant heritability. Host‐plant preference had very high H2, consistent with a previously reported genetically determined geographical cline in host‐plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness‐related life‐history traits. In contrast, we found no strong evidence for life‐history trade‐offs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号