首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ13C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moisture change. Leymus chinensis and Stipa spp. were sampled from Inner Mongolia along a dry‐wet transect, and some of these species were transplanted to an area with a moisture gradient. For Stipa spp., the slope of foliar δ13C and mean annual precipitation along the transect was significantly steeper than that of foliar δ13C and mean annual precipitation after the watering treatment. For L. chinensis, there was a general decreasing trend in foliar δ13C under the different (increasing) watering levels; however, its populations showed an irregular relationship between foliar δ13C and moisture origin. Therefore, support for our hypothesis was obtained from Stipa spp., but not from L. chinensis.  相似文献   

2.
Stable carbon isotope composition (δ13C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ13C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ13C values of all samples were measured. We compared the patterns that foliar δ13C to precipitation among different years or different sample sizes, the differences of foliar δ13C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ13C every year. Significant difference was found between the slopes of foliar δ13C to AAP and MAP every year, among the slopes of foliar δ13C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P‐values of the linear regression test between foliar δ13C and precipitation. Furthermore, there was significant lower foliar δ13C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ13C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies.  相似文献   

3.
Plant δ13C–temperature (δ‐T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ13C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming‐pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ13C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site‐mean foliar δ13C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C (= .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries, the slopes (or coefficients) of foliar δ13C and AMT were significantly steeper (larger) than those of foliar δ13C and AMT where the precipitation influence was not excluded, whereas the δ‐T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ13C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.  相似文献   

4.
Alterations to ecosystem nitrogen (N) cycling by introduced plant species may increase the invasibility of habitat providing a positive feedback for the introduced species to become invasive. Spatial patterns of foliar and soil δ15N ratios reflect variation in rates and process of N‐cycling across invaded landscapes and provide insight into N‐source uptake and utilization strategies of invasive plant species. To evaluate invasion‐associated changes in soil and foliar δ15N at different scales: regional (among different sites), local (between north‐ and south‐facing aspect at the same site), and microsite (within populations in the same community), we measured foliar and soil δ15 N, animal faeces cover (as a proxy for grazing intensity) and N2‐fixing species cover from inside to outside Thymus vulgaris L. (thyme)‐invaded lightly grazed pastoral communities in Central Otago, southern South Island, New Zealand. Mean thyme foliar δ15N were near‐zero across the invaded landscape, and did not change across the advancing edge of invasion or with aspect. There was no evidence that associations with N2‐fixing species provide a potential N source. Soil δ15N was lower inside of thyme compared to at the edge or outside of thyme and was varied between aspects at some sites. Animal faeces cover as a proxy for grazing intensity explained only 23% of this observed variation of soil δ15N. Thyme invasion may result in lowered soil δ15N reflecting alterations to N dynamics. Associated invasion‐related impacts of animal grazing may also impact soil δ15N. Further studies are required to distinguish the underlying mechanism responsible for the observed patterns of foliar and soil δ15N values across thyme‐invaded Central Otago landscapes.  相似文献   

5.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

6.
Spatial variation in mean annual precipitation is the principal driver of plant water and nitrogen status in drylands. The natural abundance of carbon stable isotopes (δ13C) in photosynthetic tissues of C3 plants is an indicator of time‐integrated behaviour of stomatal conductance; while that of nitrogen stable isotopes (δ15N) is an indicator of the main source of plant N (soil N vs. atmospheric N2). Previous studies in drylands have documented that plant δ13C and δ15N values increase with decreasing mean annual precipitation due to reductions in stomatal conductance, and soil enriched in 15N, respectively. However, evidence for this comes from studies focused on stable isotopes measurements integrated at the plant community level or on dominant plants at the site level, but little effort has been made to study C and N isotope variations within a species growing along rainfall gradients. We analysed plant δ13C, δ15N and C/N values of three woody species having different phenological leaf traits (deciduous, perennial and aphyllous) along a regional mean annual precipitation gradient from the central‐western Argentinian drylands. Noticeably, plant δ13C and δ15N values in the three woody species did not increase towards sites with low precipitation or at the start of the growing season (drier period), as we expected. These results suggest that environmental factors other than mean annual precipitation may be affecting plant δ13C and δ15N. The short‐term environmental conditions may interact with species‐specific plant traits related to water and nitrogen use strategies and override the predictive influence of the mean annual precipitation on plant δ13C and δ15N widely reported in drylands.  相似文献   

7.
Differences in trophic niches among carabid beetles (Coleoptera: Carabidae) co‐occurring on the forest floors of warm temperate forests in central Japan were studied using carbon (δ13C) and nitrogen (δ15N) stable isotope analyses. Different carabid species showed similar δ15N values, which were higher than those of their possible invertebrate prey (herbivores and detritivores) collected from the litter layer, indicating that these species were consumers in the same trophic level. In contrast, δ13C values differed among carabid species, indicating interspecific differences in prey animals. The variation in the δ13C value was larger in summer than in autumn. In summer, δ13C values indicated that some carabids depended highly on either grazing (low δ13C values) or detrital sources (high δ13C values) within the food chain [Chlaenius posticalis Motschulsky and Haplochlaenius costiger (Chaudoir), respectively], although other species with intermediate δ13C values likely depended on both. The latter group of species comprised mostly two dominant genera (Carabus and Synuchus). Although congeners might have similar feeding habits, the stable isotope ratios indicated trophic niche differences between adults of different species and between adults and larvae of the same genus.  相似文献   

8.
9.
10.
The carbon isotope composition (δ13C) of C3 ecosystems is sensitive to water availability, and provides important information for the assessment of terrestrial carbon (C) sink/source activity. Here, we report the effects of plant available soil water (PAW) on community 13C signatures of temperate humid grassland. The 5‐year study was conducted on pastures exhibiting a large range of PAW capacity that were located on two site types: peat and mineral soils. The data set included the centennial drought year 2003, and data from wet years (2000 and 2002). Seasonal variation of PAW was modeled using PAW capacity of each pasture, precipitation inputs and evapotranspiration estimates. Community 13C signatures were derived from the δ13C of vegetation and segments of tail switch hair of cattle grown while grazing pastures. Hair 13C signatures provided an assimilation‐weighted 13C signal that integrated both spatial (paddock‐scale) and temporal (grazing season) variation of 13C signatures on a pasture. The δ13C of hair and vegetation increased with decreasing modeled PAW in the same way on mineral and peat soils. But, at a given PAW, the δ13C of hair was 2.6‰ less negative than that of vegetation, reflecting the diet‐hair isotopic shift. Furthermore, the δ13C of hair and vegetation on peat soil pastures was 0.5‰ more negative than on pastures situated on mineral soil. This may have resulted from a ~10 ppm CO2 enrichment of canopy air derived from ongoing peat mineralization. Community‐scale season‐mean 13C discrimination (Δ) exhibited a saturation‐type response towards season‐mean modeled PAW (r2=0.78), and ranged between 19.8‰ on soils with low PAW capacity during the drought year of 2003, and 21.4‰ on soils with high PAW capacity in a wet year. This indicated relatively small variation in season‐mean assimilation‐weighted pi/pa (0.68–0.75) between contrasting sites and years. However, this range is similar to that reported in other studies, which encompass the range from subtropical arid to humid temperate grassland. Furthermore, the tight relationship between season‐mean Δ and modeled mean PAW suggests that PAW may be used as proxy for Δ.  相似文献   

11.
The carbon isotopic composition (δ13C) of plant material has been used extensively as an indirect measure of carbon fixation per volume of water used. More recently, the δ13C of phloem sap (δ13Cphl) has been used as a surrogate measure of short‐term, canopy scale δ13C. Using a combination of δ13C physiological, structural and chemical indices from leaves and phloem sap of Eucalyptus globulus at sites of contrasting water availability, we sought to identify short‐term, canopy scale resource limitations. Results illustrate that δ13Cphl offers valid reflections of short‐term, canopy scale values of leaf δ13C and tree water status. Under conditions limited by water, leaf and phloem sap photoassimilates differ in 13C abundance of a magnitude large enough to significantly influence predictions of water use efficiency. This pattern was not detected among trees with adequate water supply indicating fractionation into heterotrophic tissues that may be sensitive to plant water status. Trees employed a range of physiological, biochemical and structural adaptations to acclimate to resource limitation that differed among sites providing a useful context upon which to interpret patterns in δ13C. Our results highlight that such easily characterized properties are ideal for use as minimally invasive tools to monitor growth and resilience of plants to variations in resource availability.  相似文献   

12.
Consistent, repeatable segregation of plant species along hydrological gradients is an established phenomenon that must in some way reflect a trade‐off between plants' abilities to tolerate the opposing constraints of drought and waterlogging. In C3 species tissue carbon isotope discrimination (δ13C) is known to vary sensitively in response to stomatal behaviour, reflecting stomatal limitation of photosynthesis during the period of active growth. However, this has not been studied at fine‐spatial scale in natural communities. We tested how δ13C varied between species and sexes of individuals in the family Restionaceae growing along a monitored hydrological gradient. Twenty Restionaceae species were investigated using species‐level phylogeny at two sites in the Cape Floristic Region, a biodiversity hotspot. A spatial overlap analysis showed the Restionaceae species segregated significantly (P < 0.001) at both sites. Moreover, there were significant differences in δ13C values among the Restionaceae species (P < 0.001) and between male and female individuals of each species (P < 0.01). However, after accounting for phylogeny, species δ13C values did not show any significant correlation with the hydrological gradient. We suggest that some other variable (e.g. plant phenology) could be responsible for masking a simple response to water availability.  相似文献   

13.
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon : nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰, whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C : N ratio ranged between 10.7 and 53.5, and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting.  相似文献   

14.
We have investigated carbon isotopic compositions of four plant genus/species, Bothriochloa ischaemum (C4), Stipa bungeana (C3), Lespedeza sp. (C3) and Heteropappus less (C3), along a precipitation gradient in northwest China in order to assess the impact of water availability on the carbon isotopic discrimination against 13C during carbon assimilation in this area. This information is necessary for reconstruction of paleovegetation, particularly paleo‐C3/C4 plant ratios using δ13C value of organic matter in loess and paleosols in the Chinese Loess Plateau. The δ13C of C3 plants, as a group, exhibits a negative correlation with the annual precipitation amount with a total change and sensitivity of 5‰ and ?1.1‰/100 mm, respectively, for the precipitation range from 200 to 700 mm. The C4 grass, B. ischaemum responds to aridity by decreasing 1.7‰ for over the precipitation range from 350 to 700 mm; the plant δ13C is significantly correlated with annual precipitation with a slope ?0.61‰/100 mm. This result implies that without considering the effect of water availability on the plant δ13C values, reconstruction of percent C4 vegetation during the last glaciation can be overestimated by about a factor of two.  相似文献   

15.
Although several proxies for the inference of precipitation have been proposed, evidence of changes in aridity during the Holocene is scarce, and most is only qualitative. Moreover, precipitation regimes show relatively poor spatial correlations and can exhibit contrasting responses to global climate trends in different areas. Thus, there is a need to concentrate efforts at the local scale in order to increase the spatial resolution of palaeoclimate records, especially regarding water availability in semiarid zones. We propose the analysis of carbon isotope composition (δ13C) in fossil charcoal (routinely recovered from archaeological sites) to quantify changes in water availability in the past. We applied this approach to reconstruct variations in aridity during the last four millennia in the Ebro Depression (NE Iberian Peninsula). First, we studied the effect of carbonization over a range of temperatures (300–500°C) on the δ13C of Aleppo pine (Pinus halepensis Mill.) wood cores, collected from nine locations in NE Iberian Peninsula with distinct water availability. Despite significant changes in δ13C caused by carbonization, the original climatic signal of wood δ13C was well preserved. Moreover, δ13C shifts induced by this process were successfully corrected by accounting for variation in charcoal carbon concentration (%C). After removing the effect of carbonization, we estimated annual precipitation (P) and the ratio between annual precipitation and evapotranspiration (P/E) from the δ13C of fossil charcoal. In general, estimated water availability in the past was higher than present values, indicating that latter‐day (semiarid) conditions are mostly due to recent climate changes. The good agreement between our findings and other evidence indicates that the analysis of δ13C in charcoal may be useful to expand current palaeoclimate records as it provides a complementary (and quantitative) source of information to assess climate dynamics.  相似文献   

16.
17.
Plant and soil nitrogen isotope ratios (δ15N) were studied in experimental grassland plots of varying species richness. We hypothesized that partitioning of different sources of soil nitrogen among four plant functional groups (legumes, grasses, small herbs, tall herbs) should increase with diversity. Four years after sowing, all soils were depleted in 15N in the top 5 cm whereas in non‐legume plots soils were enriched in 15N at 5–25 cm depth. Decreasing foliar δ15N and Δδ15N (= foliar δ15N ? soil δ15N) values in legumes indicated increasing symbiotic N2 fixation with increasing diversity. In grasses, foliar Δδ15N also decreased with increasing diversity suggesting enhanced uptake of N depleted in 15N. Foliar Δδ15N values of small and tall herbs were unaffected by diversity. Foliar Δδ15N values of grasses were also reduced in plots containing legumes, indicating direct use of legume‐derived N depleted in 15N. Increased foliar N concentrations of tall and small herbs in plots containing legumes without reduced foliar δ15N indicated that these species obtained additional mineral soil N that was not consumed by legumes. These functional group and species specific shifts in the uptake of different N sources with increasing diversity indicate complementary resource use in diverse communities.  相似文献   

18.
1. The stable carbon isotope ratio δ13C is a useful tracer of energy flow in lake food webs, and the zooplankton signature is commonly used to establish a baseline for the pelagic habitat. However, sources of temporal variability in the δ13C of different zooplankton taxa are rarely considered. 2. Here, we investigate to what extent temporal variation in the δ13C of particulate organic matter (POM) (<41 μm) and the C : N of zooplankton can explain the temporal variability in δ13C of freshwater zooplankton. We compare temporal patterns of δ13C and C : N for Daphnia, Hesperodiaptomus franciscanus and Leptodiaptomus tyrelli over a 6‐month period at four sites in two oligotrophic lakes. 3. In all three taxa, seasonal variation in zooplankton C : N explained more of the variation in zooplankton δ13C than did the δ13C of POM. This suggests that variation in the lipid content of zooplankton can strongly influence temporal variation of δ13C in zooplankton. 4. Using these data, we evaluate procedures that estimate the δ13C of only the non‐lipid component of zooplankton. If zooplankton lipids are primarily dietary in origin, than extracting lipids or ‘normalising’δ13C based on C : N will exclude a major dietary source, and therefore may be inappropriate. 5. We conclude that temporal variation in body composition (C : N) of zooplankton can significantly influence the temporal variation of zooplankton δ13C signatures.  相似文献   

19.
1. Isotopic signatures (δ15N and δ13C) from young‐of‐the‐year (YOY) yellow perch (Perca flavescens) were collected over the initial 4 month summer growing period from three separate and distinctive sites in northern Alberta, Canada. Data were analysed to test the hypotheses that there are within‐ and among‐population differences in the patterns of isotopic δ15N and δ13C change over the growing season, and that observed isotopic dilution and/or enrichment patterns were influenced by site‐specific physical and chemical factors. 2. Increases in δ15N relative to spawned egg masses were observed in immediate posthatch (emergent) YOY and attributed to enrichment associated with the assimilation of yolk during embryonic development. 3. Posthatch dilution of YOY δ15N signatures associated with ontogenetic dietary shifts from yolk to exogenous feeding and zooplanktivory to benthivory occurred at all sites and was associated at most sites with a concomitant increase in δ13C. 4. The rate and pattern of δ15N dilution and δ13C enrichment observed for the study populations varied between and within sites and depended on maternal trophic status and timing of ontogenetic dietary shifts, as determined by prey availability and site‐specific biogeochemical factors. 5. Comparisons of isotopic dilution patterns among species, using results from this study and literature‐derived values, indicated that dilution rates and patterns are species dependent and may vary in relation to key life‐history events. 6. Seasonal and spatial isotopic variability among populations and between species complicates field sampling. In particular, the connectivity to site‐specific conditions found here suggests that for locally resident juvenile fishes, spatial, as well as temporal variability must be included in isotopic sampling programmes designed to characterise littoral zone foodweb relationships.  相似文献   

20.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号