首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Lentil (Lens culinaris Medik.) is an important food legume crop in Syria. Fusarium wilt (Fusarium oxysporum f.sp. lentis – Fol) is a key yield‐limiting factor in the country. The genetic diversity of Fol population was studied using 96 isolates collected from different parts of the country using molecular markers. A total of 16 markers, random amplified polymorphic DNA, simple sequence repeats and inter‐simple sequence repeats were used and 218 polymorphic markers (scorable bands) were obtained. Cluster and structure analyses grouped the isolates into three major groups and subgroups indicating high genetic diversity in the pathogen populations. The molecular variance within the population accounted 87% of the total variation indicating high diversity within population than among geographic locations. The result of this study showed that no alleles were linked to specific province, and therefore, screening for the Fusarium wilt in one location using virulent isolates could be enough to save time and resources.  相似文献   

2.
    
An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range‐wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R‐statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ~60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat‐matched sites within a 30‐km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability‐based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration.  相似文献   

3.
    
The genus Satureja is an important plant with a number of aromatic and medicinal properties. In this research, the relative efficiencies of amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL) were used to detect genetic relationships among 14 species of Satureja, growing wild in Iran. Eleven AFLP and 14 SAMPL primer combinations produced 999 and 1142 scorable bands, respectively, all of the fragments of which were found to be polymorphic. The average genetic similarity values based on Jaccard's coefficient were 0.24 and 0.21 for AFLP and SAMPL, respectively, indicating considerable distance and diversity in the studied germplasm. The correlation coefficients were statistically significant between both marker systems (r = 0.89). UPGMA derived from the combined binary data matrices of both markers depicted genetic distinctions among the studied species and clustered them into two main clusters and several groups. S. edmondi showed the maximum distance from other species and was placed into a single main cluster, while the maximum similarity was obtained between S. rechingeri and S. khuzistanica. Our results indicate that both marker systems are suitable for differentiating individuals and species of this genus.  相似文献   

4.
    
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

5.
6.
    
Diplodia seriata, Phaeomoniella chlamydospora and Phaeoacremonium aleophilum are the three main species associated with grapevine decline in Spain. AFLP markers were developed to discriminate Spanish populations of these species. The markers were used to genotype isolates of D. seriata, P. chlamydospora and P. aleophilum. AFLP markers were valuable in performing population genetic studies as genetic variability (Kx) ranged from 0.07 in the P. chlamydospora population to 0.28 in the D. seriata population. Species‐specific markers obtained using only two AFLP combinations clearly discriminate D. seriata, P. chlamydospora and P. aleophilum and are a useful tool in simultaneous identification tests.  相似文献   

7.
    
  相似文献   

8.
    
Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite‐ and AFLP‐based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well‐known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long‐term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre‐existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions—for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.  相似文献   

9.
    
Recent research indicates that low genetic variation in individuals can increase susceptibility to parasite infection, yet evidence from natural invertebrate populations remains scarce. Here, we studied the relationship between genetic heterozygosity, measured as AFLP‐based inbreeding coefficient fAFLP, and gregarine parasite burden from eleven damselfly, Calopteryx splendens, populations. We found that in the studied populations, 5–92% of males were parasitized by endoparasitic gregarines (Apicomplexa: Actinocephalidae). Number of parasites ranged from none to 47 parasites per male, and parasites were highly aggregated in a few hosts. Mean individual fAFLP did not differ between populations. Moreover, we found a positive association between individual's inbreeding coefficient and parasite burden. In other words, the more homozygous the individual, the more parasites it harbours. Thus, parasites are likely to pose strong selection pressure against inbreeding and homozygosity. Our results support the heterozygosity‐fitness correlation hypothesis, which suggests the importance of heterozygosity for an individual's pathogen resistance.  相似文献   

10.

Aims

The aim of this study was to characterize Streptococcus agalactiae strains that were isolated from fishes in Malaysia using random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (REP‐PCR) techniques.

Methods and Results

A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP‐PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP‐PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods.

Conclusions

Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation.

Significance and Impact of the Study

Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country.  相似文献   

11.
    
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

12.
Morphologically similar groups of species are common and pose significant challenges for taxonomists. Differences in approaches to classifying unique species can result in some species being overlooked, whereas others are wrongly conserved. The genetic diversity and population structure of the Pterostylis longifolia complex (Orchidaceae) in Tasmania was investigated to determine if four species, and potential hybrids, could be distinguished through genomic AFLP and chloroplast restriction‐fragment‐length polymorphism (RFLP) markers. Analysis of molecular variance (AMOVA) results indicated that little genetic variation was present among taxa, whereas PCoA analyses revealed genetic variation at a regional scale irrespective of taxa. Population genetic structure analyses identified three clusters that correspond to regional genetic and single taxon‐specific phenotypic variation. The results from this study suggest that “longifolia” species have persisted throughout the last glacial maximum in Tasmania and that the complex may be best treated as a single taxon with several morphotypes. These results could have serious evolutionary and conservation implications as taxonomic changes could result in the instatement of a single, widespread taxon in which rarer morphotypes are not protected.  相似文献   

13.
    
The pattern of reproductive character displacement (RCD)—in which traits associated with reproductive isolation are more different where two species occur together than where they occur in isolation—is frequently attributed to reinforcement, a process during which natural selection acting against maladaptive mating events leads to enhanced prezygotic isolation between species or incipient species. One of the first studies of RCD to include molecular genetic data was described 40 years ago in a complex of Haitian trunk anole lizards using a small number of allozyme loci. In this example, Anolis caudalis appears to experience divergence in the color and pattern of an extensible throat fan, or dewlap, in areas of contact with closely related species at the northern and southern limits of its range. However, this case study has been largely overlooked for decades; meanwhile, explanations for geographic variation in dewlap color and pattern have focused primarily on adaptation to local signalling environments. We reinvestigate this example using amplified fragment length polymorphism (AFLP) genome scans, mtDNA sequence data, information on dewlap phenotypes and GIS data on environmental variation to test the hypothesis of RCD generated by reinforcement in Haitian trunk anoles. Together, our phenotypic and genetic results are consistent with RCD at the southern and northern limits of the range of A. caudalis. We evaluate the evidence for reinforcement as the explanation for RCD in Haitian trunk anoles, consider alternative explanations and provide suggestions for future work on the relationship between dewlap variation and speciation in Haitian trunk anoles.  相似文献   

14.
15.
    
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

16.
    
Bitter gourd (Momordica charantia L.) cultivated in China is regarded as an important vegetable crop and is of considerable economic importance. However, it is susceptible to fusarium wilt, which causes heavy economic losses. Forty‐eight isolates were isolated from diseased bitter gourd plants that displayed typical fusarium wilt symptoms. Based on the morphological features, the rDNA internal transcribed space (ITS) sequences, pathogenicity and host biotypes, all of the isolates tested were pathogenic to the susceptible bitter gourd plants species (cv. ‘Guinongke No. 2’) and were identified as Fusarium oxysporum f. sp. momordicae (FOM). Our results classified different isolates as slightly, moderately or highly virulent. Among the isolates tested, 43 isolates slightly infected bottle gourd (Lagenaria siceraria var. clavata), whereas they did not infect other species from the family Cucurbitaceae. Genetic diversity among 48 isolates was characterized using amplified fragment length polymorphism (AFLP) analysis. The number of bands amplified by each primer pairs ranged from 41 to 66, with sizes ranging from 200 to 500 bp. A total of 366 bands were observed, out of which 363 were polymorphic (99.14%). The Nei's genetic identity of the six geographical populations varied from 0.7362 to 0.9707. The mean Nei's gene diversity index (= 0.2644) and the mean Shannon's information index (= 0.4071) at species level were higher than ones at populations level, indicated that the variation within populations was greater than that among populations. The Nei's GST (0.5103) and gene flow (Nm = 0.4923) revealed that genetic differentiation was mainly among populations and few gene exchanges. The dendrogram obtained from AFLP marker showed that there was a good correlation between isolates from different geographical locations and their pathogenicity. The AFLP marker effectively distinguished the high virulent isolates from the less virulent isolates. The highly virulent isolates were distinctly separated in different clusters, which indicated a significantly high correlation with the geographical origin in the AFLP dendrogram. The pathogenicity and molecular marker analysis confirmed the presence of variation in virulence as well as genetic diversity among the FOM isolates studied.  相似文献   

17.
    
Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi (previously called Porphyra yezoensis) is an economically important alga. The blades generated from conchospores are genetic chimeras, which are not suitable for genetic similarity analysis. In this study, two types of blades from a single filament of P. yezoensis sporophyte filament were obtained. One type, ConB, consisted of 40 blades that had germinated from conchospores. The other type, ArcB, consisted of 88 blades that had germinated from archeospores released from ConB. Both of them were analyzed by amplified fragment length polymorphism. The low genetic similarity levels for both conchospore‐germinated and archeospore‐germinated blades demonstrated that the conchcelis we used was cross‐fertilized. Furthermore, a higher polymorphic loci ratio (98.6%) was detected in ArcB than in ConB (80.7%), and the average genetic similarity of ArcB (average 0.61) was lower than that of ConB (average 0.71). These differences indicated that genetic analysis using ArcB gives more accurate results.  相似文献   

18.
19.
    
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

20.
    
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号