首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

2.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

3.
4.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

5.
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait‐specific Qst and Fst. Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. QstFst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a QstFst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.  相似文献   

6.
Comparative genetic mapping in interspecific pedigrees presents a powerful approach to study genetic differentiation, genome evolution and reproductive isolation in diverging species. We used this approach for genetic analysis of an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and Eucalyptus globulus (Labill.). This wide interspecific cross is characterized by hybrid inviability and hybrid abnormality. Approximately 20% of loci in the genome of the F1 hybrid are expected to be hemizygous due to a difference in genome size between E. grandis (640 Mbp) and E. globulus (530 Mbp). We investigated the extent of colinearity between the two genomes and the distribution of hemizygous loci in the F1 hybrid using high-throughput, semi-automated AFLP marker analysis. Two pseudo-backcross families (backcrosses of an F1 individual to non-parental individuals of the parental species) were each genotyped with more than 800 AFLP markers. This allowed construction of de novo comparative genetic linkage maps of the F1 hybrid and the two backcross parents. All shared AFLP marker loci in the three single-tree parental maps were found to be colinear and little evidence was found for gross chromosomal rearrangements. Our results suggest that hemizygous AFLP loci are dispersed throughout the E. grandis chromosomes of the F1 hybrid.Communicated by O. Savolainen  相似文献   

7.
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear‐cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200 000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high‐density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (FST), but not absolute (dXY), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to ‘cold‐spots’ of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.  相似文献   

8.
9.
The use of procedures for the automated scoring of amplified fragment length polymorphisms (AFLP) fragments has recently increased. Corresponding software does not only automatically score the presence or absence of AFLP fragments, but also allows an evaluation of how different settings of scoring parameters influence subsequent population genetic analyses. In this study, we used the automated scoring package rawgeno to evaluate how five scoring parameters influence the number of polymorphic bins and estimates of pairwise genetic differentiation between populations (Fst). Steps were implemented in r to automatically run the scoring process in rawgeno for a set of different parameter combinations. While we found the scoring parameters minimum bin width and minimum number of samples per bin to have only weak influence on pairwise Fst values, maximum bin width and bin reproducibility had much stronger effects. The minimum average bin fluorescence scoring parameter affected Fst values in an only moderate way. At a range of scoring parameters around the default settings of rawgeno , the number of polymorphic bins as well as pairwise Fst values stayed rather constant. This study thus shows the particularities of AFLP scoring, be it either manual or automatical, can have profound effects on subsequent population genetic analysis.  相似文献   

10.
Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to eastern US forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases of GBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluated Fst per locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.  相似文献   

11.
Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome‐wide levels of divergence that are comparable among allopatric populations (Fst estimate = 0.0042) and sympatric species (Fst estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (Fst estimate ≈ 0), a very small proportion of Fst outlier loci (0.05–0.07%), and remarkably few repeated outliers (1–3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.  相似文献   

12.
The first genetic map for Hevea spp. (2n=36) is presented here. It is based on a F1 progeny of 106 individuals allowing the construction of a female, a male, and a synthetic map according to the pseudo-testcross strategy. Progeny were derived from an interspecific cross between PB260, a H. brasiliensis cultivated clone, and RO38, a H. brasiliensis×H. benthamiana interspecific hybrid clone. The disomic inheritance observed for all the codominant markers scattered on the 2n=36 chromosomes revealed that Hevea behaves as diploids. Homologous linkage groups between the two parental maps were merged using bridge loci. A total of 717 loci constituted the synthetic map, including 301 RFLPs, 388 AFLPs, 18 microsatellites, and 10 isozymes. The markers were assembled into 18 linkage groups, thus reflecting the basic chromosome number, and covered a total distance of 2144 cM. Nine markers were found to be unlinked. Segregation distortion was rare (1.4%). Average marker density was 1 per 3 cM. Comparison of the distance between loci in the parental maps revealed significantly less meiotic recombination in the interspecific hybrid male parent than in the female parent. Hevea origin and genome organisation are discussed. Received: 2 February 1999 / Accepted: 11 March 1999  相似文献   

13.
Hybridization among conspecifics in native and introduced habitats has important implications for biological invasions in new ecosystems. Bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are genetically isolated and occur in sympatry within their native range. Following their introduction to North America, however, introgressant hybrids have been reported throughout their expanded range within the Mississippi River Basin (MRB). The extent of introgression, both spatially and generationally, is largely unknown. Therefore, we examined mixed‐species populations from across the MRB to characterize the extent of interspecific gene flow. We assayed 2798 individuals from nine locations with a suite of species‐diagnostic SNPs (57 nuclear and one mitochondrial). Forty‐four per cent (n = 1244) of individuals displayed hybrid genotypes. Moreover, the composition of hybrid genotypes varied among locations and represented complex hybrid swarms with multiple generations of gene flow. Introgressive hybrids were identified from all locations, were bidirectional and followed a bimodal distribution consisting primarily of parental or parental‐like genotypes and phenotypes. All described hybrid categories were present among individuals from 1999 to 2008, with parents and later‐generation backcrosses representing the largest proportion of individuals among years. Our mitochondrial SNP (COII), tested on a subset of 730 individuals, revealed a silver carp maternal bias in 13 of 21 (62%) F1 hybrids, in all silver carp backcrosses, and maintained throughout many of the bighead carp backcrosses. The application of this suite of diagnostic markers and the spatial coverage permits a deeper examination of the complexity in hybrid swarms between two invasive, introduced species.  相似文献   

14.
Hybrid zones are unique biological interfaces that reveal both population level and species level evolutionary processes. A genome‐scale approach to assess gene flow across hybrid zones is vital, and now possible. In Mexican towhees (genus Pipilo), several morphological hybrid gradients exist. We completed a genome survey across one such gradient (9 populations, 140 birds) using mitochondrial DNA, 28 isozyme, and 377 AFLP markers. To assess variation in introgression among loci, cline parameters (i.e., width, center) for the 61 clinally varying loci were estimated and compiled into genomic distributions for tests against three empirical models spanning the range of observed cline shape. No single model accounts for observed variation in cline shape among loci. Numerous backcross individuals near the gradient center confirm a hybrid origin for these populations, contrary to a previous hypothesis based on social mimicry and character displacement. In addition, the observed variation does not bin into well‐defined categories of locus types (e.g., neutral vs. highly selected). Our multi‐locus analysis reveals cross‐genomic variation in selective constraints on gene flow and locus‐specific flexibility in the permeability of the interspecies membrane.  相似文献   

15.
Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured by FST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.  相似文献   

16.
J. Wang 《Molecular ecology》2015,24(14):3546-3558
The widely applied genetic differentiation statistics FST and GST have recently been criticized for underestimating differentiation when applied to highly polymorphic markers such as microsatellites. New statistics claimed to be unaffected by marker polymorphisms have been proposed and advocated to replace the traditional FST and GST. This study shows that GST gives accurate estimates and underestimates of differentiation when demographic factors are more and less important than mutations, respectively. In the former case, all markers, regardless of diversity (HS), have the same GST value in expectation and thus give replicated estimates of differentiation. In the latter case, markers of higher HS have lower GST values, resulting in a negative, roughly linear correlation between GST and HS across loci. I propose that the correlation coefficient between GST and HS across loci, rGH, can be used to distinguish the two cases and to detect mutational effects on GST. A highly negative and significant rGH, when coupled with highly variable GST values among loci, would reveal that marker GST values are affected substantially by mutations and marker diversity, underestimate population differentiation, and are not comparable among studies, species and markers. Simulated and empirical data sets are used to check the power and statistical behaviour, and to demonstrate the usefulness of the correlation analysis.  相似文献   

17.
The genetic diversity (the digital characteristics) of four populations (120 individuals) of breeding large yellow croakers, Pseudosciaena crocea Richardson, was analyzed with amplified fragment length polymorphism (AFLP) markers. Ten primer combinations amplified 248 bands, of which 39.52% were polymorphic. Shannon's information index of the Daiqv (DQ) population was higher than that of the Minyu (MY) population, at 0.2167 and 0.2074, respectively. Additionally, the Shannon's information index value for the minus-hybrid (DQ population♂ × MY population♀) first hybrid generation was higher than the value for the plus-hybrid (MY population♂ × DQ population♀) first hybrid generation at 0.1687 and 0.1613, respectively. The FST of the parental generation was lower than that of the filial generation at 0.0329 and 0.0891, respectively. Gene flow was very high according to Fst values in both parental and filial generations. The UPGMA clustering analysis based on genetic similarity organized the four populations into three groups. The minus-hybrid stock was the most distinct as compared to the other populations.  相似文献   

18.
The identification of perspective parental lines for the creation of high-yield hybrids is the most labor-consuming stage of selection, because it needs extensive trials of combining ability. Based on evaluation of the genetic divergence of the parental lines, the prediction accuracy of F1 hybrids performance was investigated. The value of the divergence was calculated using biometric and molecular methods, such as inter simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD). Based on estimates of divergence, 10 lines were chosen for cyclic cross (scheme I) and testcross (scheme II). In most crosses, the F1 hybrids were significantly superior to the parents in the main economically valuable traits. The level of heterosis was higher among hybrids of scheme I. Analysis of the relationship between parental divergence and F1 performance showed that the hybrid productivity of scheme I was predetermined by ISSR divergence in 86%, and productivity was caused by RAPD divergence in 69%, whereas the F1 yield of scheme II was not related to the value of genetic distances. Since the values of DNA divergence were closely associated both with midparent level and F1 performance, we assumed that part of the polymorphic DNA fragments of the parental lines of scheme I is related to heterotic loci (HTL), which may be considered potential key markers for the heterotic selection of the sweet pepper.  相似文献   

19.
This paper elaborates on a hybrid index that utilizes information from genetic markers to quantify the genetic contribution of hybridizing species to individuals of unknown ancestry. Dominant markers will only lead to reliable and accurate estimates of hybrid index in later generation hybrids. In contrast, codominant markers can be fully resolved and their use is unproblematic. For both types of markers and allele frequencies that differ substantially between parental species (FST ≥ 0.17), a hybrid index based on 35–45 loci will have a nearly minimal confidence interval. Estimates of hybrid index are robust to modest errors in estimates of parental allele frequencies.  相似文献   

20.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号