首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

2.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

3.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

4.
5.
Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well. Received: 17 April 1996 / Accepted: 18 September 1996  相似文献   

6.
Invasive species cause deep impacts on ecosystems worldwide, contributing to the decline and extinction of indigenous species. Effective defences against native biological threats in indigenous species, whether structural or inducible, often seem inoperative against invasive species. Here, we show that tadpoles of the Iberian green frog detect chemical cues from indigenous predators (dragonfly nymphs) and respond by reducing their activity and developing an efficient defensive morphology against them (increased tail depth and pigmentation). Those defensive responses, however, were not activated against a highly damaging invasive predator (red swamp crayfish). Induced defences increased tadpole survival when faced against either indigenous dragonflies or invasive crayfish, so its inactivation in the presence of the invasive predator seems to be due to failure in cue recognition. Furthermore, we tested for local adaptation to the invasive predator by comparing individuals from ponds either exposed to or free from crayfish. In both cases, tadpoles failed to express inducible defences against crayfish, indicating that ca 30 years of contact with the invasive species (roughly 10-15 frog generations) have been insufficient for the evolution of recognition of invasive predator cues.  相似文献   

7.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

8.
The expression of prey antipredator defenses is often related to ambient consumer pressure, and prey express greater defenses under intense consumer pressure. Predation is generally greater at lower latitudes, and antipredator defenses often display a biogeographic pattern. Predation pressure may also vary significantly between habitats within latitudes, making biogeographic patterns difficult to distinguish. Furthermore, invasive predators may also influence the expression of prey defenses in ecological time. The purpose of this study was to determine how these factors influence the strength of antipredator responses. To assess patterns in prey antipredator defenses based upon geographic range (north vs. south), habitat type (wave-protected vs. wave-exposed shores), and invasive predators, we examined how native rock (Cancer irroratus) and invasive green (Carcinus maenas) crab predators influence the behavioral and morphological defenses of dogwhelk (Nucella lapillus) prey from habitats that differ in wave exposure across an ~230 km range within the Gulf of Maine. The expression of behavioral and morphological antipredatory responses varied according to wave exposure, geographic location, and predator species. Dogwhelks from areas with an established history with green crabs exhibited the largest behavioral and morphological antipredator responses to green crabs. Dogwhelk behavioral responses to rock crabs did not vary between habitats or geographic regions, although morphological responses were greater further south where predation pressure was greatest. These findings suggest that dogwhelk responses to invasive and native predators vary according to geographic location and habitat, and are strongly affected by ambient predation pressure due to the invasion history of an exotic predator.  相似文献   

9.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

10.
A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator?prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.  相似文献   

11.
PER NYSTR M 《Freshwater Biology》2005,50(12):1938-1949
1. I tested the hypothesis that the potential for non‐lethal effects of predators are more important for overall performance of the fast‐growing exotic signal crayfish (Pacifastacus leniusculus Dana) than for the slower growing native noble crayfish (Astacus astacus L.). I further tested if omnivorous crayfish switched to feed on less risky food sources in the presence of predators, a behaviour that could reduce the feeding costs associated with predator avoidance. 2. In a 2 month long outdoor pool experiment, I measured behaviour, survival, cheliped loss, growth, and food consumption in juvenile noble or signal crayfish in pools with either a caged predatory dragonfly larvae (Aeshna sp.), a planktivorous fish that do not feed on crayfish (sunbleak, Leucaspius delineatus Heckel), or predator‐free controls. Crayfish had access to multiple food sources: live zooplankton, detritus and periphyton. Frozen chironomid larvae were also supplied ad libitum outside crayfish refuges, simulating food in a risky habitat. 3. Crayfish were mainly active during hours of darkness, with signal crayfish spending significantly more time outside refuges than noble crayfish. The proportion of crayfish outside refuges varied between crayfish species, time and predator treatment, with signal crayfish spending more time in refuges at night in the presence of fish. 4. Survival in noble crayfish was higher than in signal crayfish, and signal crayfish had a higher frequency of lost chelipeds, indicating a high level of intraspecific interactions. Crayfish survival was not affected by the presence of predators. 5. Gut‐contents analysis and stable isotope values of carbon (δ13C) and nitrogen (δ15N) indicated that the two crayfish species had similar food preferences, and that crayfish received most of their energy from feeding on invertebrates (e.g. chironomid larvae), although detritus was the most frequent food item in their guts. Signal crayfish guts were more full than those of noble crayfish, but signal crayfish in pools with fish contained significantly less food and fewer had consumed chironomids compared with predator‐free controls. Length increase of signal crayfish (35%) was significantly higher than of noble crayfish (20%), but signal crayfish in pools with fish grew less than in control pools. 6. This short‐term study indicates that fish species that do not pose a lethal threat to an organism may indirectly cause reductions in growth by affecting behaviour and feeding. This may occur even though prey are omnivorous and have access to and consume multiple food sources. These non‐lethal effects of predators are expected to be particularly important in exotic crayfish species that show a general response to fish, have high individual growth rates, and when their feeding on the most profitable food source is reduced.  相似文献   

12.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

13.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

14.
Many amphibian population declines have been associated with the introduction of alien aquatic predators. Here, we explore the vulnerability of tadpoles of two sympatric Japanese species [Pelophylax nigromaculatus (PN) and Rhacophorus schlegelii (RS)] to the invasive crayfish Procambarus clarkii. We first examined the behavioral responses of the tadpoles to the cues of caged, fed crayfish predator in a controlled laboratory experiment, and subsequently tested their survival when together in the presence of free-ranging predator in outdoor mesocosms that simulated natural ponds. Only PN reduced activity level to the cues of the predator, but this apparent behavioral defense recorded in the laboratory did not result into higher survival in outdoor mesocosms. In mesocosms, PN exhibited higher biomass increment but experienced higher mortality in predator environments. The mechanism mediating mortality remains unclear though. These results indicate that sympatric prey may differentially respond and be disproportionally vulnerable to novel predators. Our study illustrates the possible contribution of a life-history trait influencing risk of predation in newly invaded systems.  相似文献   

15.
Factors related to the invasion process, such as high abundance of invaders, residence time, and functional distinctiveness, are well documented, but less attention has been given to the effects of antipredator strategy of invasive species during colonization. In this study, we explored the antipredator strategy of an introduced species by comparing the predator avoidance behaviors of two native anuran species and one introduced("exotic") species in the presence of different predators. The two native anuran species used in the study were Black-spotted Pond Frog Rana nigromaculata and Terrestrial Frog Rana limnocharis. The introduced(invasive) species used was American bullfrog Lithobates catesbeianus. Chinese pond turtle Chinemys reevesii, Red-backed rat snake Elaphe rufodorsata, and Big-headed turtle Platysternon megacephalum were used as predator species. Chinese pond turtles and Red-backed rat snakes are native predators of Black-spotted Pond Frogs and Terrestrial Frogs, while Big-headed turtles are novel("unfamiliar") to the two frogs. All three predator species are novel("unfamiliar") to the American bullfrog. The results show that tadpoles of the two native species displayed behaviors of recognizing the two native predators, but did not display the capability of identifying the novel predator. Results from our study also suggest that American bullfrog tadpoles exhibited strong antipredator behavioral responses by displaying the capability of identifying "unfamiliar" predators without cohabitation history and prior exposure to them. Such antipredator behavioral responses could have resulted in more favorable outcomes for an invading species during the invasive introductory process.  相似文献   

16.
Grason EW  Miner BG 《Oecologia》2012,169(1):105-115
Inducible defenses have the potential to affect both invasion success and the structure of invaded communities. However, little is known about the cues used for risk-recognition that influence the expression of inducible defenses in invasive prey, because they involve a novel threat. In laboratory experiments, we investigated behavioral defenses induced by a native crab on two invasive oyster drills (marine whelks Urosalpinx cinerea and Ocinebrina inornata). Both drills hid more often and reduced their feeding rates when they detected predators consuming conspecific prey. Examination of the responses of U. cinerea to specific cue sources (predator kairomones, conspecific alarm cues) indicated that this species had the strongest responses to cues from injured conspecifics, but that it did recognize the novel crab predator. Our observation of native predator (per se) recognition by an invasive marine prey is novel. In addition, we observed that neither species of drill reduced their defensive behavior to reflect predation risk shared by a group of prey. The lack of density dependence in risk-assessment could cause populations of invasive prey to transmit both quantitatively and qualitatively different community effects over the course of an invasion as abundance changes. Together, these findings demonstrate several ways that the risk-assessment strategies could be important in establishment and post-establishment dynamics of invasive prey.  相似文献   

17.
LaFiandra EM  Babbitt KJ 《Oecologia》2004,138(3):350-359
Predator-induced defenses can result from non-contact cues associated with the presence of a feeding predator; however, the nature of the predator cue has not been determined. We tested the role of two non-contact cues, metabolites of digestion of conspecific prey released by the predator and alarm pheromones released by attacked conspecific prey, in the development of inducible defenses by exposing pinewoods tree frog (Hyla femoralis) tadpoles to non-lethal dragonfly (Anax junius) larvae fed either inside experimental bins or removed from the bins for feeding to eliminate alarm pheromones. The costs associated with the development of the induced morphology were also investigated by providing the tadpoles with two food levels intended to provide adequate or growth limiting resources. The generalized morphological response of H. femoralis tadpoles to predators included the development of bodies and tails that were both deeper and shorter, smaller overall body size, and increased orange tail fin coloration and black tail outline. Metabolites of digestion were sufficient to initiate development of inducible defenses; however, the combination of metabolites and alarm cue resulted in a greater response. Furthermore, growth and development were slowed in tadpoles that expressed the induced morphology; however, this growth cost was insufficient to preclude the development of the induced morphology when food resources were low. These results indicate that two aspects of the indirect predator cue work together to trigger a morphological anti-predator response.  相似文献   

18.
The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.  相似文献   

19.
Many prey taxa use kairomones or alarm pheromones to assess the risk of predation in aquatic environments, and the rate at which these cues attenuate determines how precisely they indicate the local density of predators. We estimated the rate of degradation of chemical cues generated by Aeshna dragonfly larvae feeding on Rana temporaria tadpoles. The half‐life of the cue was 35 h and was not influenced by whether it was aged in pond water or tap water or whether other tadpoles were present in the container in which cue‐aging occurred. A review of other published estimates of predator cue half‐life revealed values of 0.2–126 h, and variation among studies was unrelated to the type of aging water, the venue in which water was aged or prey behavior observed (laboratory, field), or the type of behavior that was recorded. We conclude that factors affecting the persistence of predator cues remain uncertain in spite of their importance for understanding the evolution of induced defenses.  相似文献   

20.
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world’s most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite’s (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号