首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.  相似文献   

2.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

3.
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes.  相似文献   

4.
5.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

6.
7.
Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm‐season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool‐season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root‐to‐shoot ratios. Unlike other highly dependent species, A. gerardii had a high root‐to‐shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root‐to shoot ratio than A. gerardii. The mycorrhiza‐related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and can be influenced by both mycorrhizal fungus species and soil fertility.  相似文献   

8.
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co‐limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454‐pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.  相似文献   

9.
Anthropogenic impact represents a major pressure on ecosystems, yet little is known about how it affects symbiotic relationships, such as mycorrhizal symbiosis, which plays a crucial role in ecosystem functioning. We analyzed the effects of three human impact types – increasing urbanity, introduction of alien plant species (alienness) and modifications in plant species distribution ranges (as a proxy for naturalness) – on plant community overall mycorrhization (including arbuscular, ecto‐, ericoid and orchid mycorrhizal plants) and arbuscular mycorrhization (indicating the degree of forming mycorrhizal symbiosis at plant community level using the relative abundance of mycorrhizal and arbuscular mycorrhizal plants, respectively). The study was carried out in three habitat types, each dominated by a distinct mycorrhizal type – ectomycorrhizal woodlands, ericoid mycorrhizal heathlands and arbuscular mycorrhizal grasslands – at the regional scale in the Netherlands. The response of community mycorrhization and arbuscular mycorrhization to anthropogenic influence showed contrasting patterns, depending on the specific aspect of human impact. Community mycorrhization responded negatively to urbanity and positively to increasing alienness, while arbuscular mycorrhization showed the reverse trend. More natural heathlands were found to be more mycorrhizal and less arbuscular mycorrhizal. The strongest responses were detected in woodlands and heathlands, while mycorrhization in grasslands was relatively insensitive to human impact. Our study highlights the importance of considering mycorrhizal symbiosis in understanding and quantifying the effects of anthropogenic influence on plant communities, especially in woodlands and heathlands.  相似文献   

10.
In this study, we investigated the impact of organic and mineral fertilizers on the community composition of arbuscular mycorrhizal (AM) fungi and bacteria in the mycorrhizosphere of maize in a field experiment established in 1956, in south-east Sweden. Roots and root-associated soil aggregates were sampled four times during the growing season in 2005, in control plots and in plots amended with calcium nitrate, ammonium sulphate, green manure, farmyard manure or sewage sludge. Fungi in roots were identified by cloning and sequencing, and bacteria in soil aggregates were analysed by terminal-restriction fragment length polymorphism, cloning and sequencing. The community composition of AM fungi and bacteria was significantly influenced by the different fertilizers. Changes in microbial community composition were mainly correlated with changes in pH induced by the fertilization regime. However, other factors, including phosphate and soil carbon content, also contributed significantly to these changes. Changes in bacterial community composition and a reduction in bacterial taxon richness throughout the growing season were also manifest. The results of this study highlight the importance and significant effects of the long-term application of different fertilizers on edaphic factors and specific groups of fungi and bacteria playing a key role in arable soils.  相似文献   

11.
农业技术措施对AM真菌群落结构的影响研究进展   总被引:1,自引:0,他引:1  
农业生态系统中AM真菌多样性丰富,并以独特的群落结构发挥其功能.寄主植物和环境因子对AM真菌群落结构具有重要影响,此外,农业技术措施对农业生态系统中AM真菌群落结构的影响也值得关注.本文系统总结了施肥、灌溉、轮作、间作、土壤耕作、化学药剂等农业技术措施对AM真菌群落结构的影响研究进展,分析了农业技术措施改变AM真菌群落结构的可能机制,探讨了提高农业生态系统中AM真菌多样性的可能途径,提出通过改进施肥体制及其配套技术、增加植物多样性和人工接种AM真菌等可提高农业生态系统中AM真菌多样性;并指出当前存在的问题和今后的研究方向.  相似文献   

12.
Several fast‐growing and multipurpose trees such as exotic and valuable native species have been widely used in West Africa to reverse the tendency of massive degradation of plant cover and restore soil productivity. Although benefic effects have been reported on soil stabilization, a lack of information about their impact on soil symbiotic microorganisms still remains. This investigation has been carried out in field trees of 28 years old in a forest reserve at Bandia. To determine the mycorrhizal inoculum potential (MIP) of soils, a mycorrhizal bioassay was conducted using seedlings of Zea mays L. Spores concentration, arbuscular mycorrhizal (AM) fungi morphotypes and mycorrhizal colonization of field plants were examined. Results showed that fungal communities were dominated in all samples by the genus Glomus. Nevertheless, the others genera Gigaspora and Scutellospora occurred preferentially out of the plantations. The number and richness of spores as well as the MIP of soils were decreased in the tree plantations. Accordingly, the amount of annual herbaceous plants kept out of the tree plantations was much greater than those under the tree plantations. The colonization was higher in field root systems of herb plants in comparison with that of the tree plants. Comparisons allowed us to conclude that vegetation type modifies the AM fungal communities, and the results suggest further adoption of management practices that could improve or sustain the development of herbaceous layers and thus promote the AM fungal communities.  相似文献   

13.
Understanding which factors drive the diversity and community composition of arbuscular mycorrhizal fungi (AMF) is important due to the role of these soil micro‐organisms in ecosystem functioning and current environmental threats to AMF biodiversity. Additionally, in agro‐ecosystems, this knowledge may help to evaluate their use in making agriculture more sustainable. Here, we used 454‐pyrosequencing of small subunit rRNA gene amplicons to quantify AMF diversity and community composition in the roots of cultivated apple trees across 24 orchards in central Belgium. We aimed at identifying the factors (soil chemical variables, organic vs. conventional farming, and geographical location) that affect AMF diversity and community composition. In total, 110 AMF OTUs were detected, of which the majority belonged to the Glomeraceae (73%) and the Claroideoglomeraceae (19%). We show that soil characteristics and farming system, rather than the geographical location of the orchards, shape AMF communities on apple trees. Particularly, plant‐available P content of the soil was associated with lower AMF diversity. In orchards with a lower plant‐available P content of the soil (P < 100 mg/kg soil), we also found a significantly higher AMF diversity in organically managed orchards as compared to conventionally managed orchards. Finally, the degree of nestedness of the AMF communities was related to plant‐available P and N content of the soil, pointing at a progressive loss of AMF taxa with increasing fertilization. Overall, we conclude that a combination of organic orchard management and moderate fertilization may preserve diverse AMF communities on apple trees and that AMF in the roots of apple trees appear not to be dispersal limited at the scale of central Belgium.  相似文献   

14.
王立  汪根  马放  油勇强 《生物工程学报》2021,37(10):3604-3621
利用超积累植物进行重金属污染土壤修复是应对全球大面积分布无机污染问题的重要解决方法之一。超积累植物虽然具有超量积累重金属的能力,但其定植、生长和提取功能的发挥都受到重金属胁迫的显著影响。利用丛枝菌根真菌 (Arbuscular mycorrhizal fungi,AMF) 强化超积累植物功能可联合发挥二者的功能优势,提升修复效率、缩短修复周期、保持修复效果的稳定性和长期性,在日益复杂、严峻的重金属污染治理领域具有重要的研究价值和广阔的应用前景。文中首先给出了超积累植物的概念、中国本土首次报道的典型重金属元素超积累植物和能与AMF形成共生体系的超积累植物名录,系统深入地探讨了AMF对超积累植物生长和吸收累积重金属的影响,以及超积累植物+AMF联合吸收积累重金属的效应与作用机制,认为AMF可通过调节根围理化与生物条件、元素平衡状况、生理代谢和基因表达等途径,增强超积累植物吸收积累重金属的效应,超积累植物+AMF构建的共生体系具备联合修复重金属污染生境的潜力。最后指出了超积累植物+AMF共生联合修复技术当前面临的关键问题、发展方向和应用前景。  相似文献   

15.
A decisive set of steps in the terrestrial carbon (C) cycle is the fixation of atmospheric C by plants and the subsequent C‐transfer to rhizosphere microorganisms. With climate change winters are expected to become milder in temperate ecosystems. Although the rate and pathways of rhizosphere C input to soil could be impacted by milder winters, the responses remain unknown. To address this knowledge‐gap, a winter‐warming experiment was established in a seminatural temperate grassland to follow the C flow from atmosphere, via the plants, to different groups of soil microorganisms. In situ 13CO2 pulse labelling was used to track C into signature fatty acids of microorganisms. The winter warming did not result in any changes in biomass of any of the groups of microorganisms. However, the C flow from plants to arbuscular mycorrhizal (AM) fungi, increased substantially by winter warming. Saprotrophic fungi also received large amounts of plant‐derived C—indicating a higher importance for the turnover of rhizosphere C than biomass estimates would suggest—still, this C flow was unaffected by winter warming. AM fungi was the only microbial group positively affected by winter warming—the group with the closest connection to plants. Winter warming resulted in higher plant productivity earlier in the season, and this aboveground change likely induced plant nutrient limitation in warmed plots, thus stimulating the plant dependence on, and C allocation to, belowground nutrient acquisition. The preferential C allocation to AM fungi was at the expense of C flow to other microbial groups, which were unaffected by warming. Our findings imply that warmer winters may shift rhizosphere C‐fluxes to become more AM fungal‐dominated. Surprisingly, the stimulated rhizosphere C flow was matched by increased microbial turnover, leading to no accumulation of soil microbial biomass.  相似文献   

16.
Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change‐driven intracontinental range‐expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range‐expanding and four congeneric native species along a 2,000 km latitudinal transect from South‐Eastern to North‐Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range‐expanding plant species than in congeneric natives and that in their new range, range‐expanding plant species accumulate fewest root‐feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range‐expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range‐expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root‐feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range‐expanding and native plant species and that some range‐expanding plant species may become released from root‐feeding nematodes in the new range.  相似文献   

17.
The Enemy Release Hypothesis posits that invasion of novel habitats can be facilitated by the absence of coevolved herbivores. However, a new environment and interactions with unfamiliar herbivores may impose selection on invading plants for traits that reduce their attractiveness to herbivores or for enhanced defenses compared to native host plants, leading to a pattern similar to enemy release but driven by evolutionary change rather than ecological differences. The Shifting Defense Hypothesis posits that plants in novel habitats will shift from specialized defense mechanisms to defense mechanisms effective against generalist herbivores in the new range. We tested these ideas by comparing herbivore preference and performance of native (Eurasia)‐ and invasive (New World)‐range Medicago polymorpha, using a generalist herbivore, the soybean looper, that co‐occurs with M. polymorpha in its New World invaded range. We found that soybean loopers varied in preference and performance depending on host genotype and that overall the herbivore preferred to consume plant genotypes from naïve populations from Eurasia. This potentially suggests that range expansion of M. polymorpha into the New World has led to rapid evolution of a variety of traits that have helped multiple populations become established, including those that may allow invasive populations to resist herbivory. Thus, enemy release in a novel range can occur through rapid evolution by the plant during invasion, as predicted by the Shifting Defense Hypothesis, rather than via historical divergence.  相似文献   

18.
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location  To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results  We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths.  相似文献   

19.
Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific‐ versus heterospecific‐trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF.  相似文献   

20.
为了揭示外来植物紫茎泽兰入侵对入侵地土壤丛枝菌根真菌(AMF)群落及相关肥力的影响,比较测定了紫茎泽兰不同入侵程度土壤理化性质、AMF侵染率及AMF群落的差异。结果表明,紫茎泽兰入侵降低了土壤pH,使土壤中有机碳、全氮和速效钾含量分别增加83.0%,106.9%和111.0%;尽管对全磷含量没有显著影响,但有机磷含量呈升高的趋势,而速效磷呈降低的趋势。紫茎泽兰入侵降低了本地植物的AMF侵染率;随着入侵程度的加深,土壤中以膨胀无梗囊霉(Acauospora dilatata)为优势种的AMF群落结构逐渐转变为以近明球囊霉(Glomus claroideum )为优势种的结构,紫茎泽兰可在其根周选择培育近明球囊霉,而对其它AMF种,特别是对膨胀无梗囊霉则存在抑制作用;基于各AMF种多度的聚类分析表明,形成紫茎泽兰单优群落土壤中各AMF种多度与未入侵的本地植物群落及入侵程度较轻的紫茎泽兰与本地植物群落之间存在明显分歧。综合分析推断认为,紫茎法兰入侵改变了入侵地土壤理化性状,抑制AMF对土著植物的侵染,改变AMF群落,并在其根周选择培育近明球囊霉,这可能是紫茎泽兰入侵及扩张的重要途径之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号