首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim It has long been assumed that deteriorating climate (cooling and warming above the norm) could shrink the carrying capacity of agrarian lands, depriving the human population of sufficient food. Population collapses (i.e. negative population growth) follow. However, this human–ecological relationship has rarely been verified scientifically, and evidence of warming‐caused disaster has never been found. This research sought to explore quantitatively the temporal pattern, spatial pattern and triggers of population collapses in relation to climate change at the global scale over 1100 years. Location Various countries/regions in the Northern Hemisphere (NH) during the pre‐industrial era. Methods We performed time‐series analysis to examine the association between temperature change and country‐wide/region‐wide population collapses in different climatic zones. All of the known population collapse incidents in the NH in the period ce 800–1900 were included in our data analysis. Results Nearly 90% of population collapses in various NH countries/regions occurred during periods of climate deterioration characterized by shrinking carrying capacity of the land. In addition, we found that cooling dampened the human ecosystem and brought about 80% of the collapses in warmer humid, cooler humid and dry zones, while warming adversely affected the ecosystems in dry and tropical humid zones. All of the population collapses and growth declines in periods of warm climate occurred in dry and tropical humid zones. Malthusian checks (famines, wars and epidemics) were the dominant triggers of population collapses, which peaked dramatically when climate deteriorated. Main conclusions Global demographic catastrophes and most population collapse incidents occurred in periods with great climate change, owing to overpopulation caused by diminished carrying capacity of the land and the resultant outbreak of Malthusian checks. Impacts of cooling or warming on land carrying capacity varied geographically, as a result of the diversified ecosystems in different parts of the Earth. The observed climate–population synchrony challenges Malthusian theory and demonstrates that it is not population growth alone but climate‐induced subsistence shortage and population growth working synergistically, that cause large‐scale human population collapses on the long‐term scale.  相似文献   

2.
“Bottom‐up” influences, that is, masting, plus population density and climate, commonly influence woodland rodent demography. However, “top‐down” influences (predation) also intervene. Here, we assess the impacts of masting, climate, and density on rodent populations placed in the context of what is known about “top‐down” influences. To explain between‐year variations in bank vole Myodes glareolus and wood mouse Apodemus sylvaticus population demography, we applied a state‐space model to 33 years of catch‐mark‐release live‐trapping, winter temperature, and precise mast‐collection data. Experimental mast additions aided interpretation. Rodent numbers in European ash Fraxinus excelsior woodland were estimated (May/June, November/December). December–March mean minimum daily temperature represented winter severity. Total marked adult mice/voles (and juveniles in May/June) provided density indices validated against a model‐generated population estimate; this allowed estimation of the structure of a time‐series model and the demographic impacts of the climatic/biological variables. During two winters of insignificant fruit‐fall, 6.79 g/m2 sterilized ash seed (as fruit) was distributed over an equivalent woodland similarly live‐trapped. September–March fruit‐fall strongly increased bank vole spring reproductive rate and winter and summer population growth rates; colder winters weakly reduced winter population growth. September–March fruit‐fall and warmer winters marginally increased wood mouse spring reproductive rate and September–December fruit‐fall weakly elevated summer population growth. Density dependence significantly reduced both species' population growth. Fruit‐fall impacts on demography still appeared after a year. Experimental ash fruit addition confirmed its positive influence on bank vole winter population growth with probable moderation by colder temperatures. The models show the strong impact of masting as a “bottom‐up” influence on rodent demography, emphasizing independent masting and weather influences; delayed effects of masting; and the importance of density dependence and its interaction with masting. We conclude that these rodents show strong “bottom‐up” and density‐dependent influences on demography moderated by winter temperature. “Top‐down” influences appear weak and need further investigation.  相似文献   

3.
A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., “common” aging). Here, we leveraged Genotype‐Tissue Expression (GTEx) project data to investigate “healthy” and “common” aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a “healthy” aging cohort for each tissue. We then compared the age‐associated genes derived from this cohort with age‐associated genes from the “common” aging cohort which included all GTEx donors; we also compared the “healthy” and “common” aging gene expressions with various disease‐associated gene expressions to elucidate the relationships among “healthy,” “common” aging and disease. Our analyses showed that 1. GTEx “healthy” and “common” aging shared a large number of gene regulations; 2. Despite the substantial commonality, “healthy” and “common” aging genes also showed distinct function enrichment, and “common” aging genes had a higher enrichment for disease genes; 3. Disease‐associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some “healthy” aging gene regulations. In summary, our work highlights several unique features of GTEx “healthy” aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.  相似文献   

4.
The Great Irish Famine of 1845–1852 is among the worst food crises in human history. While numerous aspects of this period have been studied by generations of scholars, relatively little attention has so far been given to the physiological impact it is likely to have had on the people who suffered and succumbed to it. This study examines the prevalence of enamel hypoplasia, Harris lines, and growth retardation in the nonadult proportion of a skeletal population comprising victims of the Famine who died in the workhouse in the city of Kilkenny between 1847 and 1851. The frequency of enamel hypoplasia in these children does not appear to have increased as a consequence of famine, although this fact is likely to be a reflection of the osteological paradox. Harris lines and growth retardation; however, were very prevalent, and the manifestation and age‐specific distribution of these may be indicators of the Famine experience. While there was no clear correlation in the occurrence of the assessed markers, the presence of cribra orbitalia displayed a significant relationship to enamel hypoplasia in 1‐ to 5‐year‐old children. While starvation, metabolic disorders and infectious diseases are likely to have greatly contributed to the manifestation of the markers, the psychosocial stress relating to institutionalization in the workhouse should not be underestimated as a substantial causative factor for skeletal stress in this population. Am J Phys Anthropol 155:149–161, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
We demonstrate that “nanofactory”‐loaded biopolymer capsules placed in the midst of a bacterial population can direct bacterial communication. Quorum sensing (QS) is a process by which bacteria communicate through small‐molecules, such as autoinducer‐2 (AI‐2), leading to collective behaviors such as virulence and biofilm formation. In our approach, a “nanofactory” construct is created, which comprises an antibody complexed with a fusion protein that produces AI‐2. These nanofactories are entrapped within capsules formed by electrostatic complexation of cationic (chitosan) and anionic (sodium alginate) biopolymers. The chitosan capsule shell is crosslinked by tripolyphosphate (TPP) to confer structural integrity. The capsule shell is impermeable to the encapsulated nanofactories, but freely permeable to small molecules. In turn, the capsules are able to take in substrates from the external medium via diffusion, and convert these via the nanofactories into AI‐2, which then diffuses out. The exported AI‐2 is shown to stimulate QS responses in vicinal Escherichia coli. Directing bacterial population behavior has potential applications in next‐generation antimicrobial therapy and pathogen detection. We also envision such capsules to be akin to artificial “cells” that can participate in native biological signaling and communicate in real‐time with the human microbiome. Through such interaction capabilities, these “cells” may sense the health of the microbiome, and direct its function in a desired, host‐friendly manner. Biotechnol. Bioeng. 2013; 110: 552–562. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The transdiagnostic expression of psychotic experiences in common mental disorder (anxiety/depression/substance use disorder) is associated with a poorer prognosis, and a small minority of people may indeed develop a clinical picture that meets criteria for schizophrenia. However, it appears neither useful nor valid to observe early states of multidimensional psychopathology in young people through the “schizo”‐prism, and apply misleadingly simple, unnecessary and inefficient binary concepts of “risk” and “transition”. A review of the “ultra‐high risk” (UHR) or “clinical high risk” (CHR) literature indicates that UHR/CHR samples are highly heterogeneous and represent individuals diagnosed with common mental disorder (anxiety/depression/substance use disorder) and a degree of psychotic experiences. Epidemiological research has shown that psychotic experiences are a (possibly non‐causal) marker of the severity of multidimensional psychopathology, driving poor outcome, yet notions of “risk” and “transition” in UHR/CHR research are restrictively defined on the basis of positive psychotic phenomena alone, ignoring how baseline differences in multidimensional psychopathology may differentially impact course and outcome. The concepts of “risk” and “transition” in UHR/CHR research are measured on the same dimensional scale, yet are used to produce artificial diagnostic shifts. In fact, “transition” in UHR/CHR research occurs mainly as a function of variable sample enrichment strategies rather than the UHR/CHR “criteria” themselves. Furthermore, transition rates in UHR/CHR research are inflated as they do not exclude false positives associated with the natural fluctuation of dimensional expression of psychosis. Biological associations with “transition” thus likely represent false positive findings, as was the initial claim of strong effects of omega‐3 polyunsatured fatty acids in UHR samples. A large body of UHR/CHR intervention research has focused on the questionable outcome of “transition”, which shows lack of correlation with functional outcome. It may be more productive to consider the full range of person‐specific psychopathology in all young individuals who seek help for mental health problems, instead of “policing” youngsters for the transdiagnostic dimension of psychosis. Instead of the relatively inefficient medical high‐risk approach, a public health perspective, focusing on improved access to a low‐stigma, high‐hope, small scale and youth‐specific environment with acceptable language and interventions may represent a more useful and efficient strategy.  相似文献   

7.
8.
Declining numbers of Blackpoll Warblers (Setophaga striata) have been documented at long‐term migration monitoring sites as well as in breeding areas. However, the “loop migration” of Blackpoll Warblers makes it difficult to ascribe population change at migration monitoring sites to specific breeding populations. Individuals from all populations across the breeding range of Blackpoll Warblers concentrate in fall along the Atlantic coastline of eastern North America prior to initiating a transoceanic flight to wintering areas. In spring, Blackpoll Warblers return along a different route, moving north into the southeastern United States where birds from eastern and western breeding populations then diverge during migration to reach their respective breeding areas. To monitor breeding populations outside of breeding areas and identify factors potentially affecting those populations, we must be able to identify where birds captured during migration breed and map seasonal variation in population‐specific flyways. To “map” population‐specific migration movements of Blackpoll Warblers, we used feather deuterium (δ2Hf) values and a spatially explicit model to assign molt origins of 289 Blackpoll Warblers moving through sites in the Gulf of Maine (GOM) region and at three locations further west and south (northern Great Lakes area, Pennsylvania, and Florida). The assignment method was validated with feather samples from 35 birds captured during the breeding season at Churchill, Manitoba, Canada. As predicted, the spatial pattern of movement within and between seasons reflected “loop migration.” Blackpoll Warblers captured during fall migration in the GOM region included birds from across their breeding range, whereas birds captured during the spring were exclusively from northeastern populations. During fall migration, Blackpoll Warblers captured at two sites west of the GOM were from breeding areas further northwest than those from western Canada that were captured in the GOM. Blackpoll Warblers captured in eastern Florida during spring migration were assigned exclusively to breeding areas in the northeast, suggesting that eastern and western populations diverge soon after entering the United States. Finally, most Blackpoll Warblers sampled at Manomet Bird Observatory originated from breeding populations in Alaska and western Canada that have shown a similar (70–90%) decline over the same period. Our results, therefore, not only document the “loop migration” pattern of Blackpoll Warblers, but, by mapping patterns of connectivity between breeding and non‐breeding areas, may help target conservation efforts for breeding populations of Blackpoll Warblers where most needed.  相似文献   

9.
Was human fighting always there, as old as our species? Or is it a late cultural invention, emerging after the transition to agriculture and the rise of the state, which began, respectively, only around ten thousand and five thousand years ago? Viewed against the life span of our species, Homo sapiens, stretching back 150,000–200,000 years, let alone the roughly two million years of our genus Homo, this is the tip of the iceberg. We now have a temporal frame and plenty of empirical evidence for the “state of nature” that Thomas Hobbes and Jean‐Jacque Rousseau discussed in the abstract and described in diametrically opposed terms. All human populations during the Pleistocene, until about 12,000 years ago, were hunter‐gatherers, or foragers, of the simple, mobile sort that lacked accumulated resources. Studying such human populations that survived until recently or still survive in remote corners of the world, anthropology should have been uniquely positioned to answer the question of aboriginal human fighting or lack thereof. Yet access to, and the interpretation of, that information has been intrinsically problematic. The main problem has been the “contact paradox.” Prestate societies have no written records of their own. Therefore, documenting them requires contact with literate state societies that necessarily affects the former and potentially changes their behavior, including fighting.  相似文献   

10.
150 years “Biogenetic Law” The zoologist Ernst Haeckel is one of the most well‐known, but also one of the most controversial scientists of the late 19th and early 20th centuries. He was one of the earliest Darwinists and a forceful advocate of evolutionary theory. Together with “Darwin's Bulldog” Thomas Henry Huxley, Haeckel was a central figure in the early history and popularization of Darwinism. But his name is not only a symbol for the disputes about the theory of evolution and its popularization, but also for a campaign for monism, a world‐view or philosophy created by Haeckel himself. Together with Fritz Müller, Ernst Haeckel was one of the first to formulate a “Biogenetic Law”. He also created several concepts and terms still in use in biology today, such as “ontogeny”, “phylogeny”, “ecology”, “cholorogy” and “phylum” in his first, and maybe most important book “General Morphology of Organism”, which was published in 1866, 150 years ago.  相似文献   

11.
Recent investigations have revealed 1) that the isochores of the human genome group into two super‐families characterized by two different long‐range 3D structures, and 2) that these structures, essentially based on the distribution and topology of short sequences, mold primary chromatin domains (and define nucleosome binding). More specifically, GC‐poor, gene‐poor isochores are low‐heterogeneity sequences with oligo‐A spikes that mold the lamina‐associated domains (LADs), whereas GC‐rich, gene‐rich isochores are characterized by single or multiple GC peaks that mold the topologically associating domains (TADs). The formation of these “primary TADs” may be followed by extrusion under the action of cohesin and CTCF. Finally, the genomic code, which is responsible for the pervasive encoding and molding of primary chromatin domains (LADs and primary TADs, namely the “gene spaces”/“spatial compartments”) resolves the longstanding problems of “non‐coding DNA,” “junk DNA,” and “selfish DNA” leading to a new vision of the genome as shaped by DNA sequences.  相似文献   

12.
13.
Sexual selection may contribute to the evolution of plant sexual dimorphism by favoring architectural traits in males that improve pollen dispersal to mates. In both sexes, larger individuals may be favored by allowing the allocation of more resources to gamete production (a “budget” effect of size). In wind‐pollinated plants, large size may also benefit males by allowing the liberation of pollen from a greater height, fostering its dispersal (a “direct” effect of size). To assess these effects and their implications for trait selection, we measured selection on plant morphology in both males and females of the wind‐pollinated dioecious herb Mercurialis annua in two separate experimental common gardens at contrasting density. In both gardens, selection strongly favored males that disperse their pollen further. Selection for pollen production was observed in the high‐density garden only, and was weak. In addition, male morphologies associated with increased mean pollen dispersal differed between the two gardens, as elongated branches were favored in the high‐density garden, whereas shorter plants with longer inflorescence stalks were favored in the low‐density garden. Larger females were selected in both gardens. Our results point to the importance of both a direct effect of selection on male traits that affect pollen dispersal, and, to a lesser extent, a budget effect of selection on pollen production.  相似文献   

14.
Abstract The ecology and evolutionary biology of insect–plant associations has realized extensive attention, especially during the past 60 years. The classifications (categorical designations) of continuous variation in biodiversity, ranging from global patterns (e.g., latitudinal gradients in species richness/diversity and degree of herbivore feeding specialization) to localized insect–plant associations that span the biospectrum from polyphenisms, polymorphisms, biotypes, demes, host races, to cryptic species, remain academically contentious. Semantic and biosystematic (taxonomical) disagreements sometimes detract from more important ecological and evolutionary processes that drive diversification, the dynamics of gene flow and local extinctions. This review addresses several aspects of insect specialization, host‐associated divergence and ecological (including “hybrid”) speciation, with special reference to the climate warming impacts on species borders of hybridizing swallowtail butterflies (Papilionidae). Interspecific hybrid introgression may result in collapse of multi‐species communities or increase species numbers via homoploid hybrid speciation. We may see diverging, merging, or emerging genotypes across hybrid zones, all part of the ongoing processes of evolution. Molecular analyses of genetic mosaics and genomic dynamics with “divergence hitchhiking”, combined with ecological, ethological and physiological studies of “species porosity”, have already begun to unveil some answers for some important ecological/evolutionary questions. (i) How rapidly can host‐associated divergence lead to new species (and why doesn't it always do so, e.g., resulting in “incomplete” speciation)? (ii) How might “speciation genes” function, and how/where would we find them? (iii) Can oscillations from specialists to generalists and back to specialists help explain global diversity in herbivorous insects? (iv) How could recombinant interspecific hybridization lead to divergence and speciation? From ancient phytochemically defined angiosperm affiliations to recent and very local geographical mosaics, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of ecological patterns and evolutionary processes, including host‐associated genetic divergence, genomic mosaics, genetic hitchhiking and sex‐linked speciation genes. Apparent homoploid hybrid speciation in Papilio appears to have been catalyzed by climate warming‐induced interspecific introgression of some, but not all, species diagnostic traits, reflecting strong divergent selection (discordant), especially on the Z (= X) chromosome. Reproductive isolation of these novel recombinant hybrid genotypes appears to be accomplished via a delayed post‐diapause emergence or temporal isolation, and is perhaps aided by the thermal landscape. Changing thermal landscapes appear to have created (and may destroy) novel recombinant hybrid genotypes and hybrid species.  相似文献   

15.
The United Nations (UN) Convention on the Rights of Persons with Disabilities (CRPD) is the most up‐to‐date international legal instrument concerning the rights of persons with disabilities. Such persons are taken to include those with serious mental disorders. According to an authoritative interpretation of a crucial Article (Article 12 ‐ Equal recognition before the law) by the UN CRPD Committee, involuntary detention and treatment of people with mental health disabilities are prohibited under the Convention. Both conventional mental health law and “capacity‐based” law are deemed to violate the Convention. However, some other UN bodies are not in full agreement (for example, the UN Human Rights Committee and the Subcommittee on Prevention of Torture and Other Cruel, Inhuman or Degrading Treatment or Punishment), while others are less explicitly absolutist (for example, the Human Rights Council). Furthermore, strong criticisms of the position of the CRPD Committee have been mounted from a number of academic quarters. These criticisms center on whether the role of a person's ability to make a decision can be ignored, no matter the circumstances. Much of the above debate turns on the concept of “legal capacity” and the now often‐repeated precept that one must always respect the “will and preferences” of the person with a disability. However, “will and preferences” remains undefined. In this paper, I offer an analysis of “will and preferences” that can clarify interventions that may be acceptable or non‐acceptable under the terms of the UN Convention.  相似文献   

16.
Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the “microbialite refuge” hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non‐microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non‐microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non‐microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post‐extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen‐dependent metazoans in the non‐microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat‐Lagerstätte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation.  相似文献   

17.
Eating behavior can be influenced by the rewarding value of food, i.e., “liking” and “wanting.” The objective of this study was to assess in normal‐weight dietary restrained (NR) vs. unrestrained (NU) eaters how rewarding value of food is affected by satiety, and by eating a nonhealthy perceived, dessert‐specific food vs. a healthy perceived, neutral food (chocolate mousse vs. cottage cheese). Subjects (24NR age = 25.0 ± 8.2 years, BMI = 22.3 ± 2.1 kg/m2; 26NU age = 24.8 ± 8.0 years, BMI = 22.1 ± 1.7 kg/m2) came to the university twice, fasted (randomized crossover design). Per test‐session “liking” and “wanting” for 72 items divided in six categories (bread, filling, drinks, dessert, sweets, stationery (placebo)) was measured, before and after consumption of chocolate mousse/cottage cheese, matched for energy content (5.6 kJ/g) and individual daily energy requirements (10%). Chocolate mousse was liked more than cottage cheese (P < 0.05). After consumption of chocolate mousse or cottage cheese, appetite and “liking” vs. placebo were decreased in NR and NU (P < 0.03), whereas “wanting” was only decreased in NR vs. NU (P ≤ 0.01). In NR vs. NU “wanting” was specifically decreased after chocolate mousse vs. cottage cheese; this decrease concerned especially “wanting” for bread and filling (P < 0.05). To conclude, despite similar decreases in appetite and “liking” after a meal in NR and NU, NR decrease “wanting” in contrast to NU. NR decrease “wanting” specifically for a nonhealthy perceived, “delicious,” dessert‐specific food vs. a nutritional identical, yet healthy perceived, slightly less “delicious,” “neutral” food. A healthy perceived food may thus impose greater risk for control of energy intake in NR.  相似文献   

18.
19.
The “robust” australopithecines are often depicted as having large and powerfully built bodies to match their massive masticatory apparatus, but until 1988 the sample of postcranial remains attributed with certainty to this group was very limited. Almost nothing was known about the body of the East African “robust” australopithecine because taxonomic attribution of the postcrania was so uncertain. The body of the South African “robust” australopithecine had to be reconstructed from about a dozen isolated fragments of postcrania. Now a partial skeleton is attributed with confidence to the East African “robust” group along with several isolated bones. The South African sample has more than tripled. Analyses of this vastly expanded sample reveal that a large portion of postcrania attributed to “robust” australopithecines from Swartkrans Member 1 (35%) are from extraordinarily small-bodied individuals similar in size to a modern Pygmy weighing as little as 28 kg. These small elements include parts from the forelimb, spine, and hindlimb. About 22% of these Swartkrans 1 “robust” australopithecines are about the same size as a modern human weighing about 43 kgs and about 43% are larger than this standard but less than or equal to a 54 kg modern human. Approximately the same pattern is true for the Swartkrans 2 hominids, but taxonomic attribution is less certain. All of the Member 3 specimens are similar in size to the 45 kg standard. The partial skeleton of the East African “robust” australopithecine (KNM-ER 1500) has hindlimb joints that would correspond to a modern human of 34 kgs although the actual weight may be 5 to 10 kgs greater judging from shaft robusticity and forelimb size. The largest postcranial element attributed with some certainty to the East African “robust” australopithecine group (the talus, KNM-ER 1464) is about the same overall size as a modern human of 54 kgs, although its tibial facet is slightly smaller. Although many previous studies have hinted at the possibility that “robust” australopithecines had relatively small bodies, the new fossils provide substantial evidence that these creatures ranged from quite small to only moderate in body size relative to modern humans. These were the petite-bodied vegetarian cousins of our ancestors. Sexual dimorphism in body size appears to be greater than that in modern humans, similar to that in Pan, and less than that in Gorilla or Pongo, although such comparisons are of limited value given the small samples, poorly known body proportions, time averaging, and many other problems.  相似文献   

20.
Human‐induced changes in the climate and environment that occur at an unprecedented speed are challenging the existence of migratory species. Faced with these new challenges, species with diverse and flexible migratory behaviors may suffer less from population decline, as they may be better at responding to these changes by altering their migratory behavior. At the individual level, variations in migratory behavior may lead to differences in fitness and subsequently influence the population's demographic dynamics. Using lifetime GPS bio‐logging data from 169 white storks (Ciconia ciconia), we explore whether the recently shortened migration distance of storks affects their survival during different stages of their juvenile life. We also explore how other variations in migratory decisions (i.e., time, destination), movement activity (measured using overall body dynamic acceleration), and early life conditions influence juvenile survival. We observed that their first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risks. In addition, higher movement activity and overwintering “closer‐to‐home” (with 84.21% of the tracked individuals stayed Europe or North Africa) were associated with higher survival. Our study shows how avian migrants can change life history decisions over only a few decades, and thus it helps us to understand and predict how migrants respond to the rapidly changing world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号