首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasmids carrying two IS30 elements in the same orientation, as in the composite transposon Tn2706, are structurally unstable in Escherichia coli. A primary segregation product is formed by site-specific deletion of the sequences carried between the two IS30 elements. The resulting covalently closed replicon carries the two IS30 elements as tandem repeats separated by only 2 bp. This (IS30)2 structure is extremely unstable, but it can nevertheless be isolated on its vector plasmid and, after purification, can be reintroduced into host cells by transformation. Among the descendants of transformants of recA ? bacteria, replicated copies of the introduced (IS30)2 structure are still present, together with various kinds of segregation products which provide evidence for the efficient generation of DNA rearrangements. Most abundant is the product of another site-specific recombination between two identical ends of the IS30 elements involved, which results in the presence of just one intact IS30 on the plasmid. Apart from this, and depending on the presence of appropriate targets for IS30 transposition, various transposition products of (IS30)2 are also seen. Intramolecular reactions lead to DNA inversions and deletions with breakpoints other than IS30 ends. In intermolecular reactions inverse transposition occurs at high frequency and one also obtains simple transposition and cointegration. A mutational study revealed the requirement in cis of one intact IS30 transposase gene and of both proximal ends of the two IS30 elements concerned not only for the formation of (IS30)2, but also for its further rearrangement reactions, including the efficient formation of site-specific deletions. A model is proposed, which postulates that (IS30)2 intermediates play a key role in IS30 transposition pathways in which the formation of (IS30)2 may be rate-limiting. Once this structure is formed, it gives rise to a burst of transpositional rearrangements in the subclone carrying (IS30)2. Evolutionary implications of these findings are discussed.  相似文献   

2.
We have isolated and characterized a dimer derivative of the extensively studiedEscherichia coli insertion sequence IS2. The dimer structure — called (IS2)2 — consists of two IS2 elements arranged as a direct repeat, separated by 1 bp. The junction between the (IS2)2 dimer and target sequences is located at various positions in independent isolates; however, one position was preferred. The transposition of (IS2)2 into a target plasmid resulted in cointegrate-type structures. The transposition frequency of the (IS2)2 dimer itself was significantly higher than that of the isogenic monomer IS2 insertion. The poor stability and high activity of (IS2)2 indicates that this is an active transposition intermediate. The mode of transposition of (IS2)2 is analogous to the joined dimer model described in the case of (IS21)2 and (IS30)2.  相似文献   

3.
In the present study we report on the excision of IS30 elements and IS30-derived composite transposons. Frequent loss of IS30 was observed during dissolution of dimeric IS30 structures, containing IR–IR junctions, leading to resealed donor molecules. In contrast, unambiguous transpositional excision resulting in resealed remainder products could not be identified in the case of a monomeric element. The bias in the excision of monomeric and dimeric IS30 structures indicates a difference in the molecular mechanism of transposition of IS30 monomers and dimers. Sequence data on the rarely detected plasmids missing full IS or Tn copies rather suggest that all products were derived from illegitimate recombination. The reaction occurred between short homologies and was independent of the transposase activity. Similar IS30 excision events accompanied by multiple plasmid or genome rearrangements were detected in Pseudomonas putida and Rhizobium meliloti, yielding stable replicons that retained the selective marker gene of the transposon. We provide evidence that both transposition and illegitimate recombination can contribute to the stabilization of replicons through the elimination of IS elements, which emphasizes the evolutionary significance of these events.  相似文献   

4.
Isolation and characterization of four different insertion sequence (IS) elements fromPseudomonas glumaeMAFF 302744 through transposition into the entrapment vector pSHI1063 are described. One of the elements, IS1416,was further characterized. IS1416is 1322 bp long and carries 29-bp terminal inverted repeats flanked by a 3-bp direct duplication. IS1416contains three open reading frames (ORFs), which are designated ORFA1, ORFA2, and ORFB, on one strand. Both DNA sequence of IS1416and the deduced amino acid sequences of its ORFs strongly suggest that IS1416is a member of the IS3family, and is closely related to IS401fromPseudomonas cepaciaand IS51fromPseudomonas syringae.To our knowledge, IS1416is the first IS element isolated fromP. glumae.The gene organization and possible regulation of transposition functions of IS1416are also discussed.  相似文献   

5.
Summary The insertion sequence, IS50R, promotes cointegrate formation between a lambda::IS50R phage and the chromosome of Escherichia coli strain C. We show that formation of cointegrates mediated by IS50R between the non-replicating phage genome and the bacterial chromosome requires multiple donor molecules and depends on homologous recombination functions. We conclude that the two copies of IS50 present in the cointegrate originate in two different molecules. Thus, the existence of the cointegrate structure cannot be used as evidence for replication of IS50 sequences during IS50 transposition.  相似文献   

6.
IS117, the 2.6 kb mini-circle of Streptomyces coelicolor A3(2), is a transposable element previously shown to be integrated into two distant sites in the chromosome. When introduced into S. lividans, IS117 integrates into one preferred chromosomal site, but when this site was artificially deleted, IS117 integrated into many secondary sites. Nucleotide sequence analysis of several secondary integration sites revealed varying degrees of similarity with the preferred site, but no consensus sequence. Nevertheless, sites more similar to the preferred site tended to be occupied more often than those that are less similar. Insertion of IS117 into secondary sites in the chromosome of S. lividans sometimes mediated chromosomal rearrangements. It was shown that some strains containing IS117 integrated into secondary sites had suffered deletions of chromosomal DNA. Deletions were adjacent to the inserted element and were at least several kilobases long. The proposed model implicates homologous recombination between IS117 copies integrated into two different secondary sites in the same chromosome as a cause of the deletions.  相似文献   

7.
We have determined the nucleotide sequence of IS427, an insertion sequence fromAgrobacterium tumefaciens T37. IS427 is 1271 bp long, contains 16-bp imperfect terminal inverted repeats, and generates a 2-bp target sequence duplication. It is present at three sites in the pTiT37 plasmid and is absent from the chromosome ofA. tumefaciens T37. Each of the IS427 elements sequenced was near a site with sequence homology to integration host factor (IHF)-binding sites which suggested that IHF may be involved in IS427 transposition.  相似文献   

8.
Summary The mini IS elements IS6 and IS7 have been detected in constitutive gal + revertants of galOP-308::IS2 (I), in which the expression of the gal operon is turned off by IS2 in orientation I. Both, IS6 and IS7, are integrated into IS2 proximal to the gal structural genes. IS6 is 115 base pairs long and causes 50% constitutive expression of the gal genes. IS7 is only 65 base pairs long and the gal operon is expressed 20% constitutively compared to the gal + wild type operon. Both IS6 and IS7 are excised frequently, in the absence of selective pressure. These findings are discussed with respect to the evolution of gene expression.  相似文献   

9.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

10.
We have isolated and characterized a dimer derivative of the extensively studiedEscherichia coli insertion sequence IS2. The dimer structure — called (IS2)2 — consists of two IS2 elements arranged as a direct repeat, separated by 1 bp. The junction between the (IS2)2 dimer and target sequences is located at various positions in independent isolates; however, one position was preferred. The transposition of (IS2)2 into a target plasmid resulted in cointegrate-type structures. The transposition frequency of the (IS2)2 dimer itself was significantly higher than that of the isogenic monomer IS2 insertion. The poor stability and high activity of (IS2)2 indicates that this is an active transposition intermediate. The mode of transposition of (IS2)2 is analogous to the joined dimer model described in the case of (IS21)2 and (IS30)2.  相似文献   

11.
A new insertion sequence, IS1491,has been cloned and sequenced. The 2489-bp IS1491was isolated from aPseudomonas alcaligenesNCIB 9867 (strain P25X) 4.8-kbPstI chromosomal fragment. IS1491is flanked by an imperfect inverted repeat of 23 bp and carries two overlapping open reading frames, ORF1 and ORF2. Both ORF1 and ORF2 displayed homology to the IstA-like and IstB-like transposases encoded by the IS21family of insertion sequences, which include two IS elements previously isolated fromP. alcaligenesP25X, IS1474,and IS1475(Yeo, C. C., and Poh, C. L. (1997).FEMS Microbiol. Lett.149,257–263). Transposition assays showed that IS1491transposed at a frequency of approximately 1.4 × 10−6. Transposition of IS1491into the target pRK415 replicon was observed but when ORF2 was disrupted, a fusion between the donor and target replicons was detected. IS1491-like sequences were detected in total DNA ofPseudomonas putidaNCIB 9869 (strain P35X),Pseudomonas aeruginosa, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas mendocina, Comomonas acidovorans,andComomonas testosteroniby hybridization with IS1491DNA.  相似文献   

12.
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.Mobile DNA elements have been described in most organisms and represent a considerable proportion of their genetic material. These elements play an important role in the evolution of the host genome due to their capacities to generate DNA rearrangements and influence the expression of neighboring genes. Their ability to form compound transposons contributes to the sequestering and dispersion of accessory genes, such as those specifying resistance to antibiotics, virulence, and various catabolic activities. The simplest mobile elements are the bacterial insertion sequences (ISs), which typically harbor one or two open reading frames (ORF) coding for the transposase (Tpase). More than 2,400 ISs have been described and classified into families (IS Finder, http://www-is.biotoul.fr/) on the basis of similarities in their genetic organization and Tpases (30). The terminal inverted repeats (IRs) are essential for the transposition of most ISs. The IRs, together with the Tpase, form a complex where the cleavage and strand transfer reactions occur. The IRs generally contain two functional modules: the internal region serves as the binding site of Tpase, while the terminal part is required for DNA cleavage and the strand transfer process (2). Besides these principal cis-acting elements, some ISs carry additional regulatory DNA sequences in the IRs or in the subterminal regions (18).The IS30 family currently comprises more than 80 elements distributed throughout the Gram-positive and Gram-negative bacteria and the Archaea (IS Finder, http://www-is.biotoul.fr). IS30 (1, 5), the founding element of the family, is 1,221 bp long and has 26-bp imperfect IRs (the left end of the IR [IRL] and the right end of the IR [IRR]; Fig. Fig.1A)1A) and one ORF with a coding capacity for a 44.3-kDa Tpase. The element has a preference for two distinct types of target sequences: the natural hot spots (HSs), characterized by a 24-bp symmetric consensus (23), and the IRs of the element itself (21, 22). Potential helix-turn-helix motifs (HTH) responsible for HS and IR targeting are located in the N-terminal region of the Tpase (19). While the first motif, HTH1, is required only for transposition into the HS sequences, the conserved H-HTH2 motif is essential for both IR and HS targeting (15, 19).Open in a separate windowFIG. 1.Transposition assays for comparing the IS30-based transposons composed of simple IRs. (A) Comparison of the IS30 IR sequences. Dots indicate matching bases. (B) Schematic representation of the intermolecular transposition pathway. The graph shows the two major steps characteristic for IS30 transposition (steps 1 and 2). The transposon donor plasmid and its derivative, the circular transposon (thin line), carry the 26-bp IRs of IS30 (boxes with open and filled triangles representing IRL and IRR, respectively). The Cmr gene flanking the transposon in the donor plasmid is shown as a gray box. The target plasmid (dotted line) carries the GOHS hot spot sequence (cross-hatched box). (C) Transposition frequencies of IS30-based transposons with different combinations of the IRs. The graph shows the overall frequency of transposition into the hot spot (steps 1 and 2) and the frequency of the major steps assayed separately. Data were obtained from at least three parallel experiments.IS30 transposition occurs through two major steps (14, 24) (Fig. (Fig.1B).1B). The first is the formation of an active intermediate by joining of the IRs. This process involves the Tpase-catalyzed cleavage of one strand at the 3′ IS end, which then attacks the same strand 2 bp outside the other IR. This strand transfer generates a single-strand bridge between the ends and leads to a figure-eight structure (33). This active transposition intermediate carrying the joined IRs probably proceeds via replicative resolution, as described for IS911 (11, 25) and IS2 (16). The resolution can lead to the circularization of a single IS or to the formation of a head-to-tail repeat of two IS30 copies. In the second step of transposition, the active forms interact with the target DNA, resulting in the known transposition products: simple insertion, deletion, inversion, or replicon fusion (14, 24).In this work, we describe the modularity of the IR ends of IS30 by analyzing several mutants. According to our results, the IS30 IRs can be divided into functional regions that are differently involved in the main transposition steps. We show that positions 2 and 3 play a pivotal role in cleavage of the ends and, consequently, in their donor function. While the terminal part (1 to 17 bp) of the IRs is indispensable for both major steps, the internal region, i.e., the binding site for the N-terminal part of Tpase (20 to 26 bp), appears to be required only for the junction formation. Although the exact role of the terminal part of IRs is less clear, several mutations in this region considerably affected both the junction formation and integration. The fact that the internal IR region is not involved in the integration suggests that the Tpase binds to other sequences during this reaction.  相似文献   

13.
We describe here a repetitive chromosomal element, which appears to be an insertion sequence, isolated from Clavibacter xyli subsp. cynodontis, a gram-positive plant-associated bacterium. The element, IS1237, is 905 bp in size, is bounded by 19-bp perfect inverted repeats and 3-bp direct repeats, and appears at least 16 times in the genome. It contains three open reading frames which show similarity to open reading frames from various other insertion sequences. We have found that there are two groups of related mobile elements: one in which two open reading frames are read separately and the other in which these two open reading frames are fuse together to give one predicted protein product. Using one of these open reading frames to search amino acid sequence databases, we found two instances in which similar reading frames flank genes carried on plasmids. We believe therefore that these plasmid-borne genes may be parts of previously unidentified mobile elements. For IS1237, a frameshift in two of the open reading frames and a stop codon in the third may indicate that this particular copy of the element is no longer active in transposition. The similarity of IS1237 to other elements from both gram-negative and gram-positive bacteria provides further evidence that mobile elements have been transferred between these two bacterial groups.  相似文献   

14.
A new IS element (ISL3) was discovered inLactobacillus delbrueckii subsp.bulgaricus during the characterization of the linkage relationships between the two genes important for milk fermentation,-galactosidase (lacZ) and the cell-wall associated protease (prtP). ISL3 is a 1494 by element, flanked by 38 by imperfect inverted repeats, and generates an 8 by target duplication upon insertion. It contains one open reading frame, encoding a potential polypeptide of 434 amino acids, which shows significant homology (34% identity) to the transposase of theLeuconostoc mesenteroides element IS1165. Molecular analysis of spontaneouslacZ mutants revealed some strains that had sustained deletions of 7 to 30 kb in size, centered on and eliminating the copy of ISL3 next tolacZ. Other deletion endpoints were identified as located immediately adjacent to ISL3. Furthermore, genetic translocations that had occurred via transposition of ISL3 were observed fortuitously in cultures screened for deletion mutants. ISL3 can be found in one to several copies in various strains ofL. delbrueckii. However, it was not present in other dairy lactic acid bacteria tested.  相似文献   

15.
Summary Genes determining the high affinity iron transport system mediated by the siderophore aerobactin are flanked in the enterobacterial plasmid pColV-K30 by inverted repeats of IS1 sequences, suggesting that the aerobactin genes are part of a transposon. To study this possibility, the entire region between the two IS1 sequences was cloned as an 18 kb HindIII-BamHI restriction fragment in pUC8 giving plasmid pMO1. A number of derivatives of pMO1, in which aerobactin genes were tagged with a kanamycin resistance gene, were prepared in order to assess the ability of both IS1s to promote the formation of cointegrates with pCJ105, an F derivative devoid of insertion sequences. Mating-out assays indicated that both flanking IS1s were active in cointegrate formation at detectable frequencies. In some cases, the cointegrates could be resolved, the final result being a transposition-like event for the entire aerobactin system.  相似文献   

16.
Huang JT  Dooner HK 《The Plant cell》2008,20(8):2019-2032
Several observations indicate that compatible ends of separate, yet closely linked, transposable elements (TEs) can interact in alternative transposition reactions. First, pairs of TEs cause chromosome breaks with frequencies inversely related to the intertransposon distance. Second, some combinations of two TEs produce complex rearrangements that often include DNA adjacent to one or both elements. In pairs of TEs in direct orientation, alternative reactions involving the external ends of the two TEs should lead to the transposition of a macrotransposon consisting of both elements plus the intervening chromosomal segment. Such macrotransposons have been hypothesized previously based on deletions, but no macrotransposon insertions have been recovered. To detect macrotransposition, we have analyzed heritable chromosomal rearrangements produced by a chromosome-breaking pair of Ac and Ds elements situated 6.5 kb apart in direct orientation in a part of the maize (Zea mays) genome dispensable for viability. Here, we show that the postulated macrotransposon can excise and reinsert elsewhere in the genome. In addition, this transposon pair produces other complex rearrangements, including deletions, inversions, and reshuffling of the intertransposon segment. Thus, closely linked TE pairs, a common transposition outcome in some superfamilies, are adept at restructuring chromosomes and may have been instrumental in reshaping plant genomes.  相似文献   

17.
Using dot blot hybridization techniques and an internal IS256 probe, we screened 103 clinical enterococcal isolates for the presence of sequences homologous to IS256. Most screened isolates exhibited resistance to one or more antimicrobial agents. Overall, hybridization to the internal IS256 probe was demonstrable in 88/103 (85%) isolates, 49/53 (92%) gentamicin-resistant isolates hybridized with the IS256 probe. In addition, 34/45 (76%) gentamicin-susceptible, aph2″(-) strains possessed sequences homologous to IS256. Southern hybridization experiments indicated that IS256 was frequently present in multiple copies in gentamicin-susceptible strains. These results suggest that IS256 is highly prevalent in clinical enterococcal isolates and that we may anticipate the emergence of novel, IS256-based composite mobile elements.  相似文献   

18.
Summary IS2 has been marked genetically by the in vitro insertion into its HindIII site of a 3.3 Kb HindIII fragment of Tn5 conferring resistance to kanamycin. The transposition of the IS2::Km, thus obtained, to has been found and insertion sites were characterised. Each of ten independent IS2::Km insertions were found at the same site at 61.2% of the map, always in the same orientation (orientation II relative to the xis gene). The integration sites of IS2::Km in five of the kanamycin-transducing phages were determined by DNA sequence analysis, and were found to be identical at the nucleotide level. Further transposition of IS2::Km from to the bacterial chromosome was demonstrated.  相似文献   

19.
Summary We have performed a detailed analysis of intra-and intermolecular endproducts of transposition of the compound transposon Tn903 and we show that, in our system, the transposition activity is almost entirely driven by one of the flanking insertion sequences, IS903L. The relatively inactive state of IS903R can be conferred on IS903L by changing the orientation of the internal Tn region. IS903L mediates the formation of the majority of adjacent deletions, insertion/inversions nd cointegrates, all of which are representative of replicative transposition; only a very low level of conservative transposition can be observed. Our results are discussed in relation to those showing that Tn903 uses predominantly the conservative pathway.  相似文献   

20.
The repeated nucleotide sequence isolated from a methicillin-resistant Staphylococcus aureus isolate displays the characteristic features of an insertion sequence and was named IS1181. It has a size of 1512 bp and consists of a 1359-bp open reading frame that encodes a 439-amino-acid protein which is predicted to be highly basic and 23-bp terminal inverted complementary repeated sequences exhibiting six mismatches. The three copies of IS1181 isolated from distinct parts of the chromosome of S. aureus, BM3121, are flanked at their ends by 8-bp direct repeats, suggesting a duplication of the target sequence. IS1181 exhibits similarities with IS1165 from Leuconostoc mesenteroides and IS1001 from Bordetella parapertusis. IS1181 was detected in at least two to eight copies in 41 of the 52 S. aureus isolates tested, whereas none of the 26 coagulase-negative staphylococci, 24 streptococci, or 11 enterococci analyzed carried nucleotide sequences hybridizing with IS1181.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号