首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methyl-directed DNA mismatch repair in Escherichia coli   总被引:5,自引:0,他引:5  
Some of the molecular aspects of methyl-directed mismatch repair in E. coli have been characterized. These include: mismatch recognition by mutS protein in which different mispairs are bound with different affinities; the direct involvement of d(GATC) sites; and strand scission by mutH protein at d(GATC) sequences with strand selection based on methylation of the DNA at those sites. In addition, communication over a distance between a mismatch and d(GATC) sites has been implicated. Analysis of mismatch correction in a defined system (Lahue et al., unpublished) should provide a direct means to further molecular aspects of this process.  相似文献   

2.
The Escherichia coli mismatch repair system does not recognize and/or repair all mismatched base pairs with equal efficiency: whereas transition mismatches (G X T and A X C) are well repaired, the repair of some transversion mismatches (e.g. A X G or C X T) appears to depend on their position in heteroduplex DNA of phage lambda. Undecamers were synthesized and annealed to form heteroduplexes with a single base-pair mismatch in the centre and with the five base pairs flanking each side corresponding to either repaired or unrepaired heteroduplexes of lambda DNA. Nuclear magnetic resonance (n.m.r.) studies show that a G X A mismatch gives rise to an equilibrium between fully helical and a looped-out structure. In the unrepaired G X A mismatch duplex the latter predominates, while the helical structure is predominant in the case of repaired G X A and G X T mismatches. It appears that the E. coli mismatch repair enzymes recognize and repair intrahelical mismatched bases, but not the extrahelical bases in the looped-out structures.  相似文献   

3.
Repair of heteroduplex DNA containing an A/G mismatch in a mutL background requires the Escherichia coli mutY gene function. The mutY-dependent in vitro repair of A/G mismatches is accompanied by repair DNA synthesis on the DNA strand bearing mispaired adenines. The size of the mufY-dependent repair tract was measured by the specific incorporation of α-[32P]dCTP into different restriction fragments of the repaired DNA. The repair tract is shorter than 12 nucleotides and longer than 5 nucleotides and is localized to the 3′ side of the mismatched adenine. This repair synthesis is carried out by DNA polymerase I.  相似文献   

4.
The mutD (dnaQ) gene of Escherichia coli codes for the proofreading activity of DNA polymerase III. The very strong mutator phenotype of mutD5 strains seems to indicate that their postreplicational mismatch repair activity is also impaired. We show that the mismatch repair system of mutD5 strains is functional but saturated, presumably by the excess of DNA replication errors, since it is recovered by inhibiting chromosomal DNA replication. This recovery depends on de novo protein synthesis.  相似文献   

5.
Undirected mismatch repair initiated by the incorporation of the base analog 2-aminopurine kills DNA-methylation-deficient Escherichia coli dam cells by DNA double-strand breakage. Subsequently, the chromosomal DNA is totally degraded, resulting in DNA-free cells.  相似文献   

6.
A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show that a dam mutant has an increased sensitivity to hydrogen peroxide treatment that can be suppressed by mutations that inactivate MMR. In a dam mutant, MMR is not targeted to newly replicated DNA strands and therefore mismatches are converted to single- and double-strand DNA breaks. Thus, base pairs containing oxidized bases will be converted to strand breaks if they are repaired by MMR. This is demonstrated by the increased peroxide sensitivity of a dam mutant and the finding that the sensitivity can be suppressed by mutations inactivating MMR. We demonstrate further that this repair activity results from MMR recognition of base pairs containing 8-oxoguanine (8-oxoG) based on the finding that overexpression of the MutM oxidative repair protein, which repairs 8-oxoG, can suppress the mutH-dependent increase in transversion mutations. These findings demonstrate that MMR has the ability to prevent oxidative mutagenesis either by removing 8-oxoG directly or by removing adenine misincorporated opposite 8-oxoG or both.  相似文献   

7.
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.  相似文献   

8.
The MutS family of DNA repair proteins recognizes base pair mismatches and insertion/deletion mismatches and targets them for repair in a strand-specific manner. Photocrosslinking and mutational studies previously identified a highly conserved Phe residue at the N-terminus of Thermus aquaticus MutS protein that is critical for mismatch recognition in vitro. Here, a mutant Escherichia coli MutS protein harboring a substitution of Ala for the corresponding Phe36 residue is assessed for proficiency in mismatch repair in vivo and DNA binding and ATP hydrolysis in vitro. The F36A protein is unable to restore mismatch repair proficiency to a mutS strain as judged by mutation to rifampicin or reversion of a specific point mutation in lacZ. The F36A protein is also severely deficient for binding to heteroduplexes containing an unpaired thymidine or a G:T mismatch although its intrinsic ATPase activity and subunit oligomerization are very similar to that of the wild-type MutS protein. Thus, the F36A mutation appears to confer a defect specific for recognition of insertion/deletion and base pair mismatches.  相似文献   

9.
A L Lu 《Journal of bacteriology》1987,169(3):1254-1259
The effect of the number and position of DNA adenine methylation (dam) sites, i.e., d(GATC) sequences, on mismatch repair in Escherichia coli was investigated. The efficiency of repair was measured in an in vitro assay which used an f1 heteroduplex containing a G/T mismatch within the single EcoRI site. Both an increase in the number of dam sites and a shortened distance between dam site and mismatched site increased the efficiency of mismatch repair. The sequences adjacent to d(GATC) also affected the efficiency of methylation-directed mismatch repair. Furthermore, heteroduplexes with one extra dam site located close to either the 5' or 3' end of the excised base increased the repair efficiency to about the same extent. The findings suggest that the mismatch repair pathway has no preferred polarity.  相似文献   

10.
GATC sequence and mismatch repair in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.  相似文献   

11.
The Dam-directed post-replicative mismatch repair system of Escherichia coli removes base pair mismatches from DNA. The products of the mutH, mutL and mutS genes, among others, are required for efficient mismatch repair. Absence of any of these gene products leads to persistence of mismatches in DNA with a resultant increase in spontaneous mutation rate. To determine the specificity of the mismatch repair system in vivo we have isolated and characterized 47 independent mutations from a mutH strain in the plasmid borne mnt repressor gene. The major class of mutations comprises AT to GC transitions that occur within six base pairs of the only two 5'-GATC-3' sequences in the mnt gene. In the wild type control strain, insertion of the IS1 element was the major spontaneous mutational event. A prediction of the Dam-directed mismatch repair model, that the mutation spectra of dam and mutH strains should be the same, was confirmed.  相似文献   

12.
The error frequency and mutational specificity associated with Escherichia coli uracil-initiated base excision repair were measured using an M13mp2 lacZalpha DNA-based reversion assay. Repair was detected in cell-free extracts utilizing a form I DNA substrate containing a site-specific uracil residue. The rate and extent of complete uracil-DNA repair were measured using uracil-DNA glycosylase (Ung)- or double-strand uracil-DNA glycosylase (Dug)-proficient and -deficient isogenic E. coli cells. In reactions utilizing E. coli NR8051 (ung(+) dug(+)), approximately 80% of the uracil-DNA was repaired, whereas about 20% repair was observed using NR8052 (ung(-) dug(+)) cells. The Ung-deficient reaction was insensitive to inhibition by the PBS2 uracil-DNA glycosylase inhibitor protein, implying the involvement of Dug activity. Under both conditions, repaired form I DNA accumulated in conjunction with limited DNA synthesis associated with a repair patch size of 1-20 nucleotides. Reactions conducted with E. coli BH156 (ung(-) dug(+)), BH157 (ung(+) dug(-)), and BH158 (ung(-) dug(-)) cells provided direct evidence for the involvement of Dug in uracil-DNA repair. The rate of repair was 5-fold greater in the Ung-proficient than in the Ung-deficient reactions, while repair was not detected in reactions deficient in both Ung and Dug. The base substitution reversion frequency associated with uracil-DNA repair was determined to be approximately 5.5 x 10(-)(4) with transversion mutations dominating the mutational spectrum. In the presence of Dug, inactivation of Ung resulted in up to a 7.3-fold increase in mutation frequency without a dramatic change in mutational specificity.  相似文献   

13.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

14.
W J Mackay  S Han    L D Samson 《Journal of bacteriology》1994,176(11):3224-3230
The Escherichia coli Ada and Ogt DNA methyltransferases (MTases) are known to transfer simple alkyl groups from O6-alkylguanine and O4-alkylthymine, directly restoring these alkylated DNA lesions to guanine and thymine. In addition to being exquisitely sensitive to the mutagenic effects of methylating agents, E. coli ada ogt null mutants display a higher spontaneous mutation rate than the wild type. Here, we determined which base substitution mutations are elevated in the MTase-deficient cells by monitoring the reversion of six mutated lacZ alleles that revert via each of the six possible base substitution mutations. During exponential growth, the spontaneous rate of G:C to A:T transitions and G:C to C:G transversions was elevated about fourfold in ada ogt double mutant versus wild-type E. coli. Furthermore, compared with the wild type, stationary populations of the MTase-deficient E. coli (under lactose selection) displayed increased G:C to A:T and A:T to G:C transitions (10- and 3-fold, respectively) and increased G:C to C:G, A:T to C:G, and A:T to T:A transversions (10-, 2.5-, and 1.7-fold, respectively). ada and ogt single mutants did not suffer elevated spontaneous mutation rates for any base substitution event, and the cloned ada and ogt genes each restored wild-type spontaneous mutation rates to the ada ogt MTase-deficient strains. We infer that both the Ada MTase and the Ogt MTase can repair the endogenously produced DNA lesions responsible for each of the five base substitution events that are elevated in MTase-deficient cells. Simple methylating and ethylating agents induced G:C to A:T and A:T to G:C transitions in these strains but did not significantly induce G:C to C:G, A:T to C:G, and A:T to T:A transversions. We deduce that S-adenosylmethionine (known to e a weak methylating agent) is not the only metabolite responsible for endogenous DNA alkylation and that at least some of the endogenous metabolites that cause O-alkyl DNA damage in E. coli are not simple methylating or ethylating agents.  相似文献   

15.
Circular heteroduplex DNAs of bacteriophage phi X174 have been constructed carrying either a G:T (Eam+/Eam3) or a G:A (Bam+/Bam16) mismatch and containing either two, one or no GATC sequences. Mismatches were efficiently repaired in wild-type Escherichia coli transfected with phi X174 heteroduplexes only when two unmethylated GATC sequences were present in phi X174 DNA. The requirements for GATC sequences in substrate DNA and for the E. coli MutH function in E. coli mismatch repair can be alleviated by the presence of a persistent nick (transfection with nicked heteroduplex DNA in ligase temperature-sensitive mutant at 40 degrees C). A persistent nick in the GATC sequence is as effective in stimulating mutL- and mutS-dependent mismatch repair as a nick distant from the GATC sequence and from the mismatch. These observations suggest that the MutH protein participates in methyl-directed mismatch repair by recognizing unmethylated DNA GATC sequences and/or stimulating the nicking of unmethylated strands.  相似文献   

16.
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.  相似文献   

17.
Nucleotide excision repair and the long-patch mismatch repair systems correct abnormal DNA structures arising from DNA damage and replication errors, respectively. DNA synthesis past a damaged base (translesion replication) often causes misincorporation at the lesion site. In addition, mismatches are hot spots for DNA damage because of increased susceptibility of unpaired bases to chemical modification. We call such a DNA lesion, that is, a base damage superimposed on a mismatch, a compound lesion. To learn about the processing of compound lesions by human cells, synthetic compound lesions containing UV photoproducts or cisplatin 1,2-d(GpG) intrastrand cross-link and mismatch were tested for binding to the human mismatch recognition complex hMutS alpha and for excision by the human excision nuclease. No functional overlap between excision repair and mismatch repair was observed. The presence of a thymine dimer or a cisplatin diadduct in the context of a G-T mismatch reduced the affinity of hMutS alpha for the mismatch. In contrast, the damaged bases in these compound lesions were excised three- to fourfold faster than simple lesions by the human excision nuclease, regardless of the presence of hMutS alpha in the reaction. These results provide a new perspective on how excision repair, a cellular defense system for maintaining genomic integrity, can fix mutations under certain circumstances.  相似文献   

18.
The DNA binding properties of the mismatch repair protein MutL and their importance in the repair process have been controversial for nearly two decades. We have addressed this issue using a point mutant of MutL (MutL-R266E). The biochemical and genetic data suggest that DNA binding by MutL is required for dam methylation-directed mismatch repair. We demonstrate that purified MutL-R266E retains wild-type biochemical properties that do not depend on DNA binding, such as basal ATP hydrolysis in the absence of DNA and the ability to interact with other mismatch repair proteins. However, purified MutL-R266E binds DNA poorly in vitro as compared with MutL, and consistent with this observation, its DNA-dependent biochemical activities, like DNA-stimulated ATP hydrolysis and helicase II stimulation, are severely compromised. In addition, there is a modest effect on stimulation of MutH-catalyzed nicking. Finally, genetic assays show that MutL-R266E has a strong mutator phenotype, demonstrating that the mutant is unable to function in dam methylation-directed mismatch repair in vivo.  相似文献   

19.
MutS and MutL are both required to activate downstream events in DNA mismatch repair. We examined the rate of dissociation of MutS from a mismatch using linear heteroduplex DNAs or heteroduplexes blocked at one or both ends by four-way DNA junctions in the presence and absence of MutL. In the presence of ATP, dissociation of MutS from linear heteroduplexes or heteroduplexes blocked at only one end occurs within 15 s. When both duplex ends are blocked, MutS remains associated with the DNA in complexes with half-lives of 30 min. DNase I footprinting of MutS complexes is consistent with migration of MutS throughout the DNA duplex region. When MutL is present, it associates with MutS and prevents ATP-dependent migration away from the mismatch in a manner that is dependent on the length of the heteroduplex. The rate and extent of mismatch-provoked cleavage at hemimethylated GATC sites by MutH in the presence of MutS, MutL, and ATP are the same whether the mismatch and GATC sites are in cis or in trans. These results suggest that a MutS-MutL complex in the vicinity of a mismatch is involved in activating MutH.  相似文献   

20.
Mismatch uracil DNA glycosylase (Mug) from Escherichia coli is an initiating enzyme in the base-excision repair pathway. As with other DNA glycosylases, the abasic product is potentially more harmful than the initial lesion. Since Mug is known to bind its product tightly, inhibiting enzyme turnover, understanding how Mug binds DNA is of significance when considering how Mug interacts with downstream enzymes in the base-excision repair pathway. We have demonstrated differential binding modes of Mug between its substrate and abasic DNA product using both band shift and fluorescence anisotropy assays. Mug binds its product cooperatively, and a stoichiometric analysis of DNA binding, catalytic activity and salt-dependence indicates that dimer formation is of functional significance in both catalytic activity and product binding. This is the first report of cooperativity in the uracil DNA glycosylase superfamily of enzymes, and forms the basis of product inhibition in Mug. It therefore provides a new perspective on abasic site protection and the findings are discussed in the context of downstream lesion processing and enzyme communication in the base excision repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号