首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响   总被引:13,自引:0,他引:13  
大气CO2浓度升高对植物光合作用的影响研究多集中在单叶水平,在高CO2及高温下对植物单叶及群体光合进行比较的研究少有报道,而群体水平的研究则是预测生态系统反应所不可缺少的。采用田间开顶式培养室研究了大气CO2浓度和温度升高对水稻(OryzasativaL.)叶片及群体光合作用的影响。发现CO2浓度和温度对水稻叶片光合作用有协同促进作用,而对群体光合作用的促进则随时间的推移而减弱;单叶光合受到的促进作用大于群体光合;叶面积指数只在营养生长期受到促进,冠层叶片含氮量受CO2影响降低。群体呼吸(包括茎杆)增加及冠层叶片早衰可能是后期CO2对群体光合促进作用下降的原因。  相似文献   

2.
The increase of atmospheric CO2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice ( Oryza sativa L. ) were studied throughout the growing season. High CO2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in beth temperature treatments. Green leaf area index was not significantly affected by CO2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO2 stimulation in canopy net photosynthesis, keaf nitrogen in the canopy level decreased with CO2 concentration and may eventually hasten CO2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO2 is also a possible cause.  相似文献   

3.
Light (about 3,000 foot-candles) neither increased nor decreased the sink strength of young, rapidly expanding leaves of Phaseolus vulgaris L. cv. Black Valentine, as measured by the comparative rates of import of 14C-labeled photosynthates by sink leaves in the light versus dark in short term experiments. Although irradiated sink leaves accumulated more 14C activity, the difference was fully accounted for by photosynthetic reabsorption of respiratory CO2 derived from substrates translocated to the sink leaves.

Maximum sink strength was attained when the sink leaf reached 7 to 8 cm2 in area (9 to 10% of its fully expanded size). Thereafter sink strength declined rapidly and asymptotically to a near zero value at about 45% final area. During this period, however, the rapid decline in translocation was offset by a rapid rise in the photosynthetic rate of the sink leaf, maintaining a near constant relative rate of dry weight increase until the sink leaf had expanded to about 17% of its final area. Although the increasing photosynthetic capacity was associated with a decreasing import capacity, suggesting that the rate of translocation to the sink leaf was controlled by the developing capacity of the sink leaf for photosynthesis, it was not possible to vary the total (true) translocation rate to the sink leaf by varying the photosynthetic rate of the sink leaf in short term light-dark experiments. Despite a high ratio of source to sink in these experiments, no evidence accrued that translocation into young bean leaves was ever sink-limited.

  相似文献   

4.
Carex acutiformis and Brachypodium pinnatum were grown with a uniform distribution of photosynthetic photon flux density (PFD) with height, and in a vertical PFD gradient similar to the PFD gradient in a leaf canopy. Distribution of organic leaf N and light-saturated rates of photosynthesis were determined. These parameters were also determined on plants growing in a natural vegetation stand. The effect of a PFD gradient was compared with the effect of a leaf canopy. In Brachypodium, plants growing in a vegetation stand had increasing leaf N with plant height. However, distribution of leaf N was not influenced by the PFD gradient treatment. The gradient of leaf N in plants growing in a leaf canopy was not due to differences within the long, mostly erect, leaves but to differences between leaves. In Carex, however, the PFD gradient caused a clear increase of leaf N with height in individual leaves and thus also in plants. The leaf N gradient was similar to that of plants growing in a leaf canopy. Leaf N distribution was not affected by nutrient availability in Carex. In most cases, photosynthesis was positively related to leaf N. Hence, lightsaturated rates of photosynthesis increased towards the top of the plants growing in leaf canopies in both species and, in Carex, also in the PFD gradient, thus contributing to increased N use efficiency for photosynthesis of the whole plant. It is concluded that in Carex the PFD gradient is the main environmental signal for leaf N allocation in response to shading in a leaf canopy, but one or more other signals must be involved in Brachypodium.  相似文献   

5.
Leaf canopy plays a determining role influencing source-sink relations as any change in source activity (photosynthesis) affects sink metabolism. Defoliation (removal of leaves) influences growth and photosynthetic capacity of plants, remobilizes carbon and nitrogen reserves and accelerates sink metabolism, leading to improved source-sink relations. The response of plants to defoliation could be used to manipulate source-sink relations by removing lower and senescing leaves to obtain greatest photosynthetic capacity and efficient carbon and nitrogen metabolism under optimal and stressful environments. The present work enhances our current understanding on the physiological responses of plants to defoliation and elaborates how defoliation influences growth, photosynthetic capacity and source-sink relations under optimal and changing environmental conditions.  相似文献   

6.
Poplars (Populus spp.) have a particular petiole morphology that enhances leaf flutter even in light winds. Previous studies have shown that this trait enhances whole canopy carbon gain through changes in the temporal dynamics and spatial distribution of light in the lower canopy. However, less is known about the effects of flutter for leaves at the top of the canopy ("sun leaves"). A computer simulation model was developed that uses latitude, time of day, day of year, azimuth and a slope component, which was varied at a 3 Hz frequency over an arc of rotation to create the flutter motion, and generate data on light interception for both surfaces of a fixed or fluttering leaf. The light files generated (10 Hz) were input into a dynamic model of photosynthesis to estimate the carbon gain for both fluttering and fixed leaves. As compared to leaves fixed at various angles and azimuths, fluttering leaves had a more uniform light interception. Depending on their angle and azimuth, fixed leaves may not always be intercepting high photon flux density (PFD) even when exposed to full sun. Leaf flutter continuously randomizes leaf angles creating uniform PFD inputs for photosynthetic reactions regardless of variation in leaf orientation and solar position. These effects on light interception could have positive impacts on carbon gain for leaves at the top of the canopy.  相似文献   

7.
Seasonal patterns of leaf photosynthetic capacity and conductance were determined for deciduous hardwood tree species in natural habitats in northern lower Michigan. Leaves of bigtooth aspen and red oak at the top of the canopy had higher maximum CO2 Exchange Rate (CER) (10–15 μmol m 2 s 1) than leaves of sugar maple, red maple, red oak, and beech growing in the understory (4–5 μmol m 2 s 1). In all leaves, CER measured at light-saturation increased to a maximum near the completion of leaf expansion in early June, was constant until mid-September, and then rapidly declined until leaf death. A similar pattern was seen for CER measured in low light (1.5% full sun). Respiration rate in the dark was highest in young leaves and decreased during leaf expansion; a relatively constant rate was then maintained for the rest of leaf lifespan. The seasonal pattern of the initial slope of the light response of CER paralleled the pattern of light-saturated CER. The initial slope in midsummer ranged from values of 37 to 44 μmol/mol for species in the understory to 51 and 56 μmol/mol for red oak and bigtooth aspen, respectively, at the top of the canopy. Leaf conductance was constant throughout most of leaf lifespan, with some decline occurring in autumn. Leaves at the top of the canopy had higher conductances for water vapor (2–5 mm/s) than leaves in the understory (1–2 mm/s). All species maintained leaf intercellular CO, mole fractions (c,) near 200 uML/L until autumn, when c, increased during leaf senescence.  相似文献   

8.
The effects of elevated growth temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) on leaf photosynthesis, pigments and chlorophyll fluorescence of a boreal perennial grass (Phalaris arundinacea L.) under different water regimes (well watered to water shortage) were investigated. Layer-specific measurements were conducted on the top (younger leaf) and low (older leaf) canopy positions of the plants after anthesis. During the early development stages, elevated temperature enhanced the maximum rate of photosynthesis (P max) of the top layer leaves and the aboveground biomass, which resulted in earlier senescence and lower photosynthesis and biomass at the later periods. At the stage of plant maturity, the content of chlorophyll (Chl), leaf nitrogen (NL), and light response of effective photochemical efficiency (ΦPSII) and electron transport rate (ETR) was significantly lower under elevated temperature than ambient temperature in leaves at both layers. CO2 enrichment enhanced the photosynthesis but led to a decline of NL and Chl content, as well as lower fluorescence parameters of ΦPSII and ETR in leaves at both layers. In addition, the down-regulation by CO2 elevation was significant at the low canopy position. Regardless of climate treatment, the water shortage had a strongly negative effect on the photosynthesis, biomass growth, and fluorescence parameters, particularly in the leaves from the low canopy position. Elevated temperature exacerbated the impact of water shortage, while CO2 enrichment slightly alleviated the drought-induced adverse effects on P max. We suggest that the light response of ΦPSII and ETR, being more sensitive to leaf-age classes, reflect the photosynthetic responses to climatic treatments and drought stress better than the fluorescence parameters under dark adaptation.  相似文献   

9.
The objective was to investigate how nitrogen allocation patterns in plants are affected by their vertical position in the vegetation (i.e. being either dominant or subordinate). A garden experiment was carried out with Amaranthus dubius L., grown from seed, in dense stands in which a size hierarchy of nearly equally aged individuals had developed. A small number of dominant plants had most of their leaf area in the highest layers of the canopy while a larger number of subordinate plants grew in the shade of their dominant neighbours. Canopy structure, vertical patterns of leaf nitrogen distribution and leaf photosynthetic characteristics were determined in both dominant and subordinate plants. The light distribution in the stands was also measured. Average N contents per unit leaf area (total canopy nitrogen divided by the total leaf area) were higher in the dominant than in the subordinate plants and this was explained by the higher average MPA (leaf dry mass per unit area) of the dominant plants. However, when expressed on a weight basis, average N contents (LNCav; total canopy N divided by the total dry weight of leaves) were higher in the subordinate plants. It is possible that these higher LNCav values reflect an imbalance between carbon and nitrogen assimilation with N uptake exceeding its metabolic requirement. Leaf N content per unit area decreased more strongly with decreasing relative photon flux density in the dominant than in the subordinate plants showing that this distribution pattern can be different for plants which occupy different positions in the light gradient in the canopy. The amount of N which is reallocated from the oldest to the younger, more illuminated leaves higher up in the vegetation may depend on the sink strength of the younger leaves for nitrogen. In the subordinate plants, constrained photosynthetic activity caused by shading might have reduced the sink intensity of these leaves.  相似文献   

10.
To examine the role of sink size on photosynthetic acclimation under elevated atmospheric CO2 concentrations ([CO2]), we tested the effects of panicle-removal (PR) treatment on photosynthesis in rice (Oryza sativa L.). Rice was grown at two [CO2] levels (ambient and ambient + 200 μmol mol−1) throughout the growing season, and at full-heading stage, at half the plants, a sink-limitation treatment was imposed by the removal of the panicles. The PR treatment alleviated the reduction of green leaf area, the contents of chlorophyll (Chl) and Rubisco after the full-heading stage, suggesting delay of senescence. Nonetheless, elevated [CO2] decreased photosynthesis (measured at current [CO2]) of plants exposed to the PR treatment. No significant [CO2] × PR interaction on photosynthesis was observed. The decrease of photosynthesis by elevated [CO2] of plants was associated with decreased leaf Rubisco content and N content. Leaf glucose content was increased by the PR treatment and also by elevated [CO2]. In conclusion, a sink-limitation in rice improved N status in the leaves, but this did not prevent the photosynthetic down-regulation under elevated [CO2].  相似文献   

11.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

12.
The first trifoliate of soybean was shaded when fully expanded, while the plant remained in high light; a situation representative for plants growing in a closed crop. Leaf mass and respiration rate per unit area declined sharply in the first few days upon shading and remained rather constant during the further 12 days of the shading treatment. Leaf nitrogen per unit area decreased gradually until the leaves were shed. Leaf senescence was enhanced by the shading treatment in contrast to control plants growing in low light. Shaded leaves on plants grown at low nutrient availability senesced earlier than shaded leaves on plants grown at high nutrient availability. The light saturated rate of photosynthesis decreased also gradually during the shading treatment, but somewhat faster than leaf N, whereas chlorophyll contents declined somewhat slower than leaf N.
Partitioning of N in the leaf over main photosynthetic functions was estimated from parameters derived from the response of photosynthesis to CO2. It appeared that the N exported from the leaf was more at the expense of compounds that make up photosynthetic capacity than of those involved in photon absorption, resulting in a change in partitioning of N within the photosynthetic apparatus. Photosynthetic nitrogen use efficiency increased during the shading treatment, which was for the largest part due to the decrease in leaf N content, to some extent to the decrease in respiration rate and only for a small part to change in partitioning of N within the photosynthetic apparatus.  相似文献   

13.
王帆  何奇瑾  周广胜 《生态学报》2019,39(1):254-264
植物干物质的累积依赖于群体光合速率,而群体光合速率又与单叶的光合能力密切有关。叶片光合作用与其含水量密切相关,目前关于不同叶位叶片含水量对持续干旱的响应及其与光合作用的关系还未见报道。以华北夏玉米郑单958为材料,设置6个不同灌水处理,模拟不同灌溉量下持续干旱对夏玉米不同叶位叶片生理特性的影响,分析夏玉米顶部开始的第一、三、五叶位叶片的水分变化及其与净光合速率的关系。结果表明:夏玉米不同叶位的叶片最大含水量不同,且随干旱进程的推进叶片含水量的变化速率也不同,第一叶的叶片含水量下降速率高于第三、第五叶,第一叶的最大含水量高于第三、五叶,且可进行光合产物积累的叶片含水量下限随叶位的增加而增大。同时,第一叶的叶片含水量与土壤水分呈显著相关,且与净光合速率的相关性也非常强。第一叶可进行光合产物积累的叶片水分下限(净光合速率为零时的叶片含水量)最小,表明其耐旱性最强,对干旱具有指导意义。研究结果可为提高冠层光合作用模拟的准确性及夏玉米干旱发生发展的监测预警提供参考。  相似文献   

14.
The rates of net photosynthesis per unit ground area by a closedcanopy of tomato plants were measured over a range of naturallight flux densities. The canopy, of leaf area index 8.6, wasdivided into three horizontal layers of equal depth. On successivedays the canopy was progressively defoliated in layers fromthe ground upwards, allowing the photosynthetic contributionfrom individual leaf layers to be determined. The uppermostlayer, 23% of the total leaf area, assimilated 66% of the netCO2 fixed by the canopy and accounted for a similar percentageof the total leaf respiration. Net photosynthesis versus light response curves for individualleaves from different positions within the canopy were alsoobtained. Leaf conductances to CO2 transfer and the dark respirationrates of leaves from the uppermost leaf layer were approximatelyten times those from the lowest layer. The canopy data were analysed using a simple model which assumedthat the canopy was composed of leaves with identical photosyntheticand respiratory characteristics. The model fitted the data andallowed the characteristics of an ‘idealized’ leafto be estimated. The estimated values of the leaf light utilizationefficiency, ,and the leaf conductance CO2 transfer, , were similarto values directly determined for individual leaves in the uppermostleaf layer and the estimated rate of leaf dark respiration,Rd, corresponded to measured rates for leaves much lower inthe canopy. The simple model may be used to examine gross effectsof crop environment on the leaf photosynthetic characteristicof an ‘idealized’ leaf, but cannot be used to predictaccurately canopy net photosynthesis from the photosyntheticand respiratory characteristics of any single real leaf. A moredetailed model, developed to allow explicitly for the observedvariation in and Rd within the canopy is appropriate for thispurpose.  相似文献   

15.
Leaf and canopy photosynthesis of cotton (Gossypium hirsutum L.) declines as the crop approaches cutout, just as the assimilate needs for reproductive growth are peaking. Our objective with this study was to determine whether this decline is due to remobilization of leaf components to support the reproductive growth or due to some cue from the changing environmental conditions during the growing season. Field studies were conducted in 1995–1996 at Stoneville, Mississippi, using six cotton genotypes and two planting dates (early and late), which produced two distinctly different cotton populations reaching cutout at different times. Among the six genotypes were a photoperiod sensitive line (non-flowering) and its counter part which had photoperiod insensitive genes backcrossed four times to the photoperiod sensitive line (flowering). This pair was used to assess the degree that the photosynthetic decline could be attributed to reproductive sink development. Leaf CO2-exchange rate (CER) and chlorophyll (Chl) fluorescence measurements were taken in mid-August, a period corresponding to cutout for the early planted plots, and those leaves were collected. Leaf Chl level, soluble protein level, various soluble carbohydrate levels and Rubisco activities were assayed on those leaves. Averaged across years, leaf CER and soluble protein levels were reduced approximately 14% and 18%, respectively, for the early planted compared to the late planted cotton. Neither leaf Chl levels or Chl fluorescence Fv/Fm values for Photosystem II yield were altered by the planting date. In 1996, leaves from the non-flowering line had 12% greater Chl and 20% greater soluble protein levels than the flowering line. However, in 1996, the CER of the early planted non-flowering line was reduced 10% compared to the late planted. Although remobilization of leaf N to reproductive growth appears to be the principle component causing the cutout photosynthetic decline, the data also indicate that environmental factors can play a small role in causing the decline. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
During vegetative growth, the vertical profile of leaf nitrogen(N) often parallels the profile of light distribution withinthe canopy. This is more advantageous in terms of canopy photosynthesisthan a uniform distribution of leaf N. We investigated the influenceof both reproductive growth and N supply on the profiles ofN and light in canopies of irrigated cotton crops (Gossypiumhirsutum L.). Regular samplings were made from soon after theonset of reproductive growth until crop maturity. Every 2 weeks,a 1 m2sample of the canopy was cut in four successive verticallayers of equal thickness. Leaf area and N concentration (%)in each layer were measured. The vertical N gradient becamemore marked with ongoing reproductive development. It is hypothesizedthat because of the high rate of growth after the onset of reproductivedevelopment and the long duration of this phase compared toother species, the whole canopy photosynthetic benefit thatwould accrue from maintaining the N gradient is likely to beaccentuated. The rate of decline in leaf N concentration ina layer was not related to either the initial concentrationin the leaves nor the boll load within the layer.Copyright 2001Annals of Botany Company Gossypium hirsutum, leaf nitrogen, light profile, nitrogen, nitrogen distribution, remobilization, reproductive growth  相似文献   

17.
There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use.  相似文献   

18.
Internal water balance of barley under soil moisture stress   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments.

Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied.

The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions.

  相似文献   

19.
Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.  相似文献   

20.
Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]‐driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号