首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycoproteins of several viruses have the capacity to induce release of noninfectious, capsidless particulate structures containing only the viral glycoprotein. Such structures are often called subviral particles (SVP). Foamy viruses (FVs), a special type of retroviruses with a replication strategy combining features of both orthoretroviruses and hepadnaviruses, express a glycoprotein (Env) which has the ability to induce SVP release. However, unlike human hepatitis B virus, prototype FV (PFV) naturally secretes only small amounts of SVPs, because ubiquitination of the Env protein seems to suppress the intrinsic capacity for induction of SVP release. In this study, we characterized the structural determinants influencing PFV SVP release, examined the role of specific Env ubiquitination sites in the regulation of this process, and analyzed the requirement of the cellular vacuolar protein sorting (VPS) machinery for SVP egress. We observed that the cytoplasmic and membrane-spanning domains of both the leader peptide (LP) and the transmembrane (TM) subunit harbor essential as well as inhibitory domains. Furthermore, only ubiquitination at the most N-terminal lysine residues (K14 and K15) in LP reduced cell surface expression and suppressed SVP release to wild-type levels. This suggests that interaction of Env with cellular components required for SVP release suppression is effective only when Env is ubiquitinated at these lysine residues but not at others. Finally, SVP release was sensitive to dominant-negative mutants of late components, but not early components, of the cellular VPS machinery. PFV therefore differs from hepatitis B virus in using the same cellular pathway for egress of both virions and SVPs.  相似文献   

2.
Signal peptides (SP) are key determinants for targeting glycoproteins to the secretory pathway. Here we describe the involvement in particle maturation as an additional function of a viral glycoprotein SP. The SP of foamy virus (FV) envelope glycoprotein is predicted to be unusually long. Using an SP-specific antiserum, we demonstrate that its proteolytic removal occurs posttranslationally by a cellular protease and that the major N-terminal cleavage product, gp18, is found in purified viral particles. Analysis of mutants in proposed signal peptidase cleavage positions and N-glycosylation sites revealed an SP about 148 amino acids (aa) in length. FV particle release from infected cells requires the presence of cognate envelope protein and cleavage of its SP sequence. An N-terminal 15-aa SP domain with two conserved tryptophan residues was found to be essential for the egress of FV particles. While the SP N terminus was found to mediate the specificity of FV Env to interact with FV capsids, it was dispensable for Env targeting to the secretory pathway and FV envelope-mediated infectivity of murine leukemia virus pseudotypes.  相似文献   

3.
The prototype foamy virus (PFV) glycoprotein, which is essential for PFV particle release, displays a highly unusual biosynthesis, resulting in posttranslational cleavage of the precursor protein into three particle-associated subunits, i.e., leader peptide (LP), surface (SU), and transmembrane (TM). Glycosidase digestion of metabolically labeled PFV particles revealed the presence of N-linked carbohydrates on all subunits. The differential sensitivity to specific glycosidases indicated that all oligosaccharides on LP and TM are of the high-mannose or hybrid type, whereas most of those attached to SU, which contribute to about 50% of its molecular weight, are of the complex type. Individual inactivation of all 15 potential N-glycosylation sites in PFV Env demonstrated that 14 are used, i.e., 1 out of 2 in LP, 10 in SU, and 3 in TM. Analysis of the individual altered glycoproteins revealed defects in intracellular processing, support of particle release, and infectivity for three mutants, having the evolutionarily conserved glycosylation sites N8 in SU or N13 and N15 in the cysteine-rich central "sheets-and-loops" region of TM inactivated. Examination of alternative mutants with mutations affecting glycosylation or surrounding sequences at these sites indicated that inhibition of glycosylation at N8 and N13 most likely is responsible for the observed replication defects, whereas for N15 surrounding sequences seem to contribute to a temperature-sensitive phenotype. Taken together these data demonstrate that PFV Env and in particular the SU subunit are heavily N glycosylated and suggest that although most carbohydrates are dispensable individually, some evolutionarily conserved sites are important for normal Env function of FV isolates from different species.  相似文献   

4.
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.  相似文献   

5.
Foamy viruses (FVs) are classified in the family Retroviridae, but recent data have shown that they are not conventional retroviruses. Notably, several characteristics of their particle replication strategies are more similar to those of hepatitis B virus (HBV) than those of typical retroviruses. Compared to conventional retroviruses, which require only Gag proteins for budding and release of virus-like particles (VLPs), both FV and HBV require Env proteins. In the case of HBV, Env (S protein) alone is sufficient to form subviral particles (SVPs). Because FVs also depend on Env for budding, we tested whether FV Env alone could produce SVPs. The Env proteins of FV and murine leukemia virus (MuLV) were both released into cell culture supernatants and migrated into isopycnic gradients; however, unlike MuLV Env, FV Env displayed characteristics of SVPs. FV Env particles were of greater density than those of MuLV (1.11 versus 1.07 g/ml, respectively), which strongly suggested that the released proteins of FV Env were particulate. When we examined FV SVPs by immunoelectron microscopy, we found particles that were consistent in morphology, size, and staining with gold beads, similar to FV VLPs and unlike the particle-like structures of MuLV Env, which were more consistent with vesicles produced from nonspecific membrane "blebbing." Taken together, our results demonstrated that FV Env alone is sufficient for particle budding. This finding is unique among retroviruses and further demonstrated the similarities between FV and HBV.  相似文献   

6.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.  相似文献   

7.
A FLAG epitope tag was substituted within variable loop 1 (V1), 2 (V2), or 4 (V4) of the gp120 envelope glycoprotein of simian immunodeficiency virus strain 239 (SIV239) to evaluate the extent to which each variable loop may serve as a target for antibody-mediated neutralization. Two sites within each variable loop of SIV239 were chosen for individual epitope tag insertions. FLAG epitope substitutions were also made in the V1, V2, and V4 loops of a neutralization-sensitive derivative of SIV239, SIV316. Of the 10 FLAG-tagged recombinant viruses analyzed, three (SIV239FV1b, SIV239FV2b, and SIV239FV4a) replicated with kinetics similar to those of the parental strain, SIV239, in both CEMx174 cells and the immortalized rhesus monkey T-cell line 221. The SIV316FV1b and SIV316FV4a FLAG variants replicated with a substantial lag, and the five remaining recombinants did not replicate detectably. Both gp160 and gp120 from replication-competent FLAG variants could be immunoprecipitated from transfected 293T cells by the anti-gp120 rhesus monoclonal antibody (RhMAb) 3.11H, the anti-FLAG MAb M2, and CD4-immunoglobulin, whereas only unprocessed gp160 was detected in 293T cells transfected with replication-defective variants. Furthermore, gp120 was detectably incorporated only into virions that were infectious. SIV239FV1b was sensitive to neutralization by MAb M2, with a 50% inhibitory concentration of 1 mug/ml. Neither SIV239FV2b nor SIV239FV4a was sensitive to M2 neutralization. The ability of the M2 antibody to neutralize SIV239FV1b infectivity was associated with an increased ability of the M2 antibody to detect native, oligomeric SIV239FV1b envelope protein on the surfaces of cells relative to that for the other SIV FLAG variants. Furthermore, SIV239FV1b was globally more sensitive to antibody-mediated neutralization than was parental SIV239 when these strains were screened with a panel of anti-SIV MAbs of various specificities. These results indicate that the V1 loop can serve as an effective target for neutralization on SIV239FV1b. However, antibody-mediated neutralization of this variant, similar to that of other SIV239 variants that have been studied previously, was associated with a global increase in neutralization sensitivity. These results suggest that the variable loops on the neutralization-resistant SIV239 strain are difficult for antibodies to access effectively and that mutations that allow neutralization have global effects on the trimeric envelope glycoprotein structure and accessibility.  相似文献   

8.
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.  相似文献   

9.
Among all retroviruses, foamy viruses (FVs) are unique in that they regularly mature at intracytoplasmic membranes. The envelope glycoprotein of FV encodes an endoplasmic reticulum (ER) retrieval signal, the dilysine motif (KKXX), that functions to localize the human FV (HFV) glycoprotein to the ER. This study analyzed the function of the dilysine motif in the context of infectious molecular clones of HFV that encoded mutations in the dilysine motif. Electron microscopy (EM) demonstrated virion budding both intracytoplasmically and at the plasma membrane for the wild-type and mutant viruses. Additionally, mutant viruses retained their infectivity, but viruses lacking the dilysine signal budded at the plasma membrane to a greater extent than did wild-type viruses. Interestingly, this relative increase in budding across the plasma membrane did not increase the overall release of viral particles into cell culture media as measured by protein levels in viral pellets or infectious virus titers. We conclude that the dilysine motif of HFV imposes a partial restriction on the site of viral maturation but is not necessary for viral infectivity.  相似文献   

10.
gp64 is the major envelope glycoprotein in the budded form of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). gp64 is essential for AcMNPV infection, as it mediates penetration of budded virus into host cells via the endocytic pathway. In this study, we used site-directed mutagenesis to map the positions of the N-linked glycans on AcMNPV gp64, characterize their structures, and evaluate their influence on gp64 function. We found that four of the five consensus N-glycosylation sites in gp64 are used, and we mapped the positions of those sites to amino acids 198, 355, 385, and 426 in the polypeptide chain. Endoglycosidase H sensitivity assays showed that N-linked glycans located at different positions are processed to various degrees. Lectin blotting analyses showed that each N-linked glycan on gp64 contains α-linked mannose, all but one contains α-linked fucose, and none contains detectable β-linked galactose or α2,6-linked sialic acid. The amounts of infectious progeny produced by AcMNPV mutants lacking one, two, or three N-linked glycans on gp64 were about 10- to 100-fold lower than wild-type levels. This reduction did not correlate with reductions in the expression, transport, or inherent fusogenic activity of the mutant gp64s or in the gp64 content of mutant budded virus particles. However, all of the mutant viruses bound more slowly than the wild type. Therefore, elimination of one or more N-glycosylation sites in AcMNPV gp64 impairs binding of budded virus to the cell, which explains why viruses containing these mutant forms of gp64 produce less infectious progeny.  相似文献   

11.
The foamy virus (FV) glycoprotein precursor gp130(Env) undergoes a highly unusual biosynthesis, resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM). Little structural and functional information on the extracellular domains of FV Env is available. In this study, we characterized the prototype FV (PFV) Env receptor-binding domain (RBD) by flow cytometric analysis of recombinant PFV Env immunoadhesin binding to target cells. The extracellular domains of the C-terminal TM subunit as well as targeting of the recombinant immunoadhesins by the cognate LP to the secretory pathway were dispensable for target cell binding, suggesting that the PFV Env RBD is contained within the SU subunit. N- and C-terminal deletion analysis of the SU domain revealed a minimal continuous RBD spanning amino acids (aa) 225 to 555; however, internal deletions covering the region from aa 397 to 483, but not aa 262 to 300 or aa 342 to 396, were tolerated without significant influence on host cell binding. Analysis of individual cysteine point mutants in PFV SU revealed that only most of those located in the nonessential region from aa 397 to 483 retained residual binding activity. Interestingly, analysis of various N-glycosylation site mutants suggests an important role of carbohydrate chain attachment to N391, either for direct interaction with the receptor or for correct folding of the PFV Env RBD. Taken together, these results suggest that a bipartite sequence motif spanning aa 225 to 396 and aa 484 to 555 is essential for formation of the PFV Env RBD, with N-glycosylation site at position 391 playing a crucial role for host cell binding.  相似文献   

12.
Nef is a HIV-1 accessory protein critical for the replication of the virus and the development of AIDS. The major pathological activity of Nef is the down-regulation of CD4, the primary receptor of HIV-1 infection. The mechanism underlying Nef-mediated CD4 endocytosis and degradation remains incompletely understood. Since protein ubiquitination is the predominant sorting signal in receptor endocytosis, we investigated whether Nef is ubiquitinated. The in vivo ubiquitination assay showed that both HIV-1 and SIV Nef proteins expressed in Jurkat T cells and 293T cells were multiple ubiquitinated by ubiquitin-His. The lysine-free HIV-1 Nef mutant (Delta10K) generated by replacing all 10 lysines with arginines was not ubiquitinated and the major ubiquitin-His attachment sites in HIV-1 Nef were determined to be lysine 144 (di-ubiquitinated) and lysine 204 (mono-ubiquitinated). Lysine-free HIV-1 Nef was completely inactive in Nef-mediated CD4 down-regulation, so was the Nef mutant with a single arginine substitution at K144 but not at K204. A mutant HIV-1 provirion NL4-3 with a single arginine substitution in Nef at K144 was also inactive in Nef-mediated CD4 down-regulation. Lysine-free Nef mutant reintroduced with lysine 144 (DeltaK10 + K144) was shown active in CD4 down-regulation. These data suggest that ubiquitination of Nef, particularly diubiquitination of the lysine 144, is necessary for Nef-mediated CD4 down-regulation.  相似文献   

13.
The transport of the gp70 glycoprotein to the cell surface and concomitant release of infectious virus was inhibited by treatment of Friend murine leukemia virus-infected Eveline cells with the sodium ionophore monensin. Virus yields were reduced more than 50-fold by 10(-5) M monensin, whereas particle production was reduced by 50% in monensin-treated cells. The resulting particles failed to incorporate newly synthesized gp70 and p15(E), whereas the other structural proteins, p30, p15, p12, and p10, were incorporated into virions. However, monensin did not inhibit the incorporation into virions of preformed gp70. A reduction in the efficiency of cleavage of the PrENV glycoprotein precursor and a defect in the processing of simple endo-H-sensitive to complex endo-H-resistant oligosaccharides suggest that intracellular transport of gp70 may be blocked before its entry into the Golgi apparatus. Fewer particles were found to bud from the cell surface, but intracellular vacuoles with budding virions were detected. Ferritin labeling and pulse-chase studies suggested a cell surface origin for these vacuoles. These experiments indicate that monensin inhibits the transport of Friend murine leukemia virus glycoproteins at an early stage, with a resultant block in the assembly and release of infectious virus.  相似文献   

14.
Native hepatitis B surface antigen (HBsAg) spontaneously assembles into 22-nm subviral particles. The particles are lipoprotein micelles, in which HBsAg is believed to span the lipid layer four times. The first two transmembrane domains, TM1 and TM2, are required for particle assembly. We have probed the requirements for particle assembly by replacing the entire first or third TM domain of HBsAg with the transmembrane domain of HIV gp41. We found that either TM domain of HBsAg could be replaced, resulting in HBsAg-gp41 chimeras that formed particles efficiently. HBsAg formed particles even when both TM1 and TM3 were replaced with the gp41 domain. The results indicate remarkable flexibility in HBsAg particle formation and provide a novel way to express heterologous membrane proteins that are anchored to a lipid surface by their own membrane-spanning domain. The membrane-proximal exposed region (MPER) of gp41 is an important target of broadly reactive neutralizing antibodies against HIV-1, and HBsAg-MPER particles may provide a good platform for future vaccine development.  相似文献   

15.
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.  相似文献   

16.
Flavivirus envelope proteins have been shown to play a major role in virus assembly. These proteins are anchored into cellular and viral membranes by their C-terminal domain. These domains are composed of two hydrophobic stretches separated by a short hydrophilic segment containing at least one charged residue. We investigated the role of the transmembrane domains of prM and E in the envelope formation of the flavivirus yellow fever virus (YFV). Alanine scanning insertion mutagenesis has been used to examine the role of the transmembrane domains of prM and E in YFV subviral particle formation. Most of the insertions had a dramatic effect on the release of YFV subviral particles. Some of these mutations were introduced into the viral genome. The ability of these mutant viruses to produce infectious particles was severely reduced. The alanine insertions did not affect prM-E heterodimerization. In addition, replacement of the charged residues present in the middle of the transmembrane domains had no effect on subviral particle release. Taken together, these data indicate that the transmembrane domains of prM and E play a crucial role in the biogenesis of YFV envelope. In addition, these data indicate some differences between the transmembrane domains of the hepaciviruses and the flaviviruses.  相似文献   

17.
CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may serve to engage each E2-E3 complex. Collectively, our findings underscore the interplay between protein phosphorylation and ubiquitination in ERAD and, to our knowledge, provide the very first example of gp78 substrate recognition via protein phosphorylation.  相似文献   

18.
Retroviral Gag polyprotein precursors are both necessary and sufficient for the assembly and release of virus-like particles (VLPs) from infected cells. It is well established that small Gag-encoded motifs, known as late domains, promote particle release by interacting with components of the cellular endosomal sorting and ubiquitination machinery. The Gag proteins of a number of different retroviruses are ubiquitinated; however, the role of Gag ubiquitination in particle egress remains undefined. In this study, we investigated this question by using a panel of equine infectious anemia virus (EIAV) Gag derivatives bearing the wild-type EIAV late domain, heterologous retroviral late domains or no late domain. Ubiquitin was fused in cis to the C-termini of these Gag polyproteins, and the effects on VLP budding were measured. Remarkably, fusion of ubiquitin to EIAV Gag lacking a late domain (EIAV/DeltaYPDL-Ub) largely rescued VLP release. We also determined the effects of ubiquitin fusion on the sensitivity of particle release to budding inhibitors and to depletion of key endosomal sorting factors. Ubiquitin fusion rendered EIAV/DeltaYPDL-Ub sensitive to depletion of cellular endosomal sorting factors Tsg101 and Alix and to overexpression of dominant-negative fragments of Tsg101 and Alix. These findings demonstrate that ubiquitin can functionally compensate for the absence of a retroviral late domain and provide insights into the host-cell machinery engaged by ubiquitin during particle egress.  相似文献   

19.
V Bruss  D Ganem 《Journal of virology》1991,65(7):3813-3820
Cells infected with hepatitis B virus produce both virions and 20-nm subviral (surface antigen or HBsAg) particles; the latter are composed of viral envelope proteins and host-derived lipid. Although hepatitis B virus encodes three envelope proteins (L, M, and S), all of the information required to produce an HBsAg particle resides within the S protein. This polypeptide spans the bilayer at least twice and contains three hydrophobic regions, two of which are known to harbor topogenic signal sequences that direct this transmembrane orientation. We have examined the effects of mutations in these and other regions of the S protein on particle assembly and export. Lesions in the N terminal signal sequence (signal I) can still insert into the endoplasmic reticulum bilayer but do not participate in any of the subsequent steps in assembly. Deletion of the major internal signal (signal II) completely destabilizes the chain. Deletion of the C-terminal hydrophobic domain results in a stable, glycosylated, but nonsecreted chain. However, when coexpressed with wild-type S protein this mutant polypeptide can be incorporated into particles and secreted, indicating that the chain is still competent for some of the distal steps in particle assembly. The correct transmembrane disposition of the N terminus of the molecule is important for particle formation: addition of a heterologous (globin) domain to this region impairs secretion, but the defect can be corrected by provision of an N-terminal signal sequence that restores the proper topology of this region. The resulting chimeric chain is assembled into subviral particles that are secreted with normal efficiency.  相似文献   

20.
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号