首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This study assessed the extent of sexual dimorphism in striped dolphin (Stenella coeruleoalba) cranial size and shape off the South African coast. Dorsal and ventral features of 60 striped dolphin crania from both the western and eastern coasts of South Africa were analyzed using landmark‐based geometric morphometrics. Although there was no evidence of dimorphism in cranial size, evidence for small, but significant, variation in both dorsal and ventral cranial shape was found between the sexes. The observed dimorphism was partly associated with changes in shape around the temporal fossa, occipital condyle and supraoccipital bone, the nasal bone, and the paraoccipital process and basiocciptal. The temporal fossa serves as an attachment point for the temporal muscle, which functions to close the lower jaw, and the occipital area serves as the anterior insertion of the epaxial muscles, which power the upstroke of the flukes during swimming. Both the paraoccipital process and basiocciptal are associated with the functioning of the hyoid apparatus, which serves as an attachment point for muscles and ligaments involved in feeding and sound production. These findings suggest the possibility of differences in diet, foraging behavior, vocalizations, and locomotion between the sexes of this species.  相似文献   

2.
The nutritional requirements of Drosophila have mostly been studied for development and reproduction, but the minimal requirements for adult male and female flies for lifespan have not been established. Following development on a complete diet, we find substantial sex difference in the basic nutritional requirement of adult flies for full length of life. Relative to females, males require less of each nutrient, and for some nutrients that are essential for development, adult males have no requirement at all for lifespan. The most extreme (and surprising) sex differences were that chronic cholesterol and vitamin deficiencies had no effect on the lifespan of adult males, but they greatly decreased lifespan in females. Female oogenesis rather than chromosomal karyotype and mating status is the key cause of this gender difference in life‐sustaining nutritional requirements. These data are important to the way we understand the mechanisms by which diet modifies lifespan.  相似文献   

3.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

4.
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female‐biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female‐biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.  相似文献   

5.
6.
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.  相似文献   

7.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

8.
Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13‐ and 17‐year species in each group, 13‐year cicadas were equal in size or slightly smaller on average than their 17‐year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17‐year cicadas have lowered growth rates compared to their 13‐years counterparts, allowing 13‐year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17‐year counterparts at the same locations. However, in the Decim group, which includes two 13‐year species, the more southerly, anciently diverged 13‐year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13‐ and 17‐year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles.  相似文献   

9.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

10.
Sutural complexity (the degree of interdigitation) of 13 cranial sutures was compared between male and female wild sheep ( Ovis orientalis ) to investigate a morphological feature that is potentially important with respect to stress transmission in the skulls of males during fighting. Most facial sutures (four of six) were not sexually dimorphic, but two sutures, the maxillojugal and jugolacrimal, had greater complexity in males than in females, suggesting that significant forces may be transmitted through the facial region of rams, most likely during horn clashing. Most of the braincase sutures (five of seven) were more complex in males than in females, and different factors appear to underlie this sexual dimorphism. In females, increased complexity of sutures during ontogeny was predicted best by variables measuring growth of the skull, brain or face, while in males, changes in complexity were predicted best by variables representing mechanical loading and frontal bone growth.  相似文献   

11.
Indirect genetic effects (IGEs) describe the effect of the genes of social partners on the phenotype of a focal individual. Here, we measure indirect genetic effects using the “coefficient of interaction” (Ψ) to test whether Ψ evolved between Drosophila melanogaster and D. simulans. We compare Ψ for locomotion between ethanol and nonethanol environments in both species, but only D. melanogaster utilizes ethanol ecologically. We find that while sexual dimorphism for locomotion has been reversed in D. simulans, there has been no evolution of social effects between these two species. What did evolve was the interaction between genotype‐specific Ψ and the environment, as D. melanogaster varies unpredictably between environments and D. simulans does not. In this system, this suggests evolutionary lability of sexual dimorphism but a conservation of social effects, which brings forth interesting questions about the role of the social environment in sexual selection.  相似文献   

12.
13.
We examined sexual size dimorphism of the rock-dwelling lizard Darevskia raddei (Boettger, 1892) with the help of 30 specimens that were provided from various sources. Eleven metric and seven meristic features were examined. Seven characters (gulars, length of basal tail, femoral pores, length of head, width of head, length of fore limb and length of hind limb) were identified as dimorphic between the two sexes. Some of these characters have important roles in copulation for males, especially the hind limb and the tail base. The number of femoral pores is important in the release of signal components because females release these components to attract males during the mating season. The length of the hind limb as locomotor performance plays an important role during mating, so that the male can grasp the female and adopt the correct position during copulation.  相似文献   

14.
Wild rodents (Bolomys lasiurus) of both sexes were caught in a cerrado grassland area during the dry (July-September) and rainy (January-March) seasons of Brazil. Fasted animals were perfused with Karnovsky fixative through the left ventricle, under ether anesthesia, and the submandibular gland was processed for embedding in historesin. Histological and histometric data show sexual dimorphism at both seasons. In the volume percentage of the granular convoluted tubules (GCT) and their secretory granules, the males exhibited higher values. The absolute volume occupied by these structures, however, was dimorphic only in the rainy season. The diameter of the GCT, the height of its epithelium, and its total length were also greater in males during the rainy season. The absolute volumes of the acini and of the ductal tree were identical in both sexes in the dry and rainy seasons but the acinar diameter increased in the males and females during the rainy season. The sexual dimorphism and the seasonal variations now described in the B. lasiurus submandibular glands could be explained by the augmented reproductive activity of the males in the rainy period.  相似文献   

15.
16.
Geographic variation in size (skull length) and sexual dimorphism in Mustela erminea, Mustela frenata and Mustela nivalis in North America is described and analysed in relation to latitude, longitude, climatic variables, and sympatry or allopatry of these species. Only erminea increases in size with latitude; it does so regardless of the presence or absence of frenata or nivalis. Latitude is a better predictor of size in erminea than available measures of climate, seasonality or prey size. There is no evidence for character displacement between any pair of species. The sexes covary in size in frenata and erminea , and probably in nivalis , although geographic variation in sexual dimorphism occurs in frenata and erminea. The principal cause of sexual dimorphism appears to be sexual selection for large size in males rather than the high energetic requirements resulting from an elongate body shape. However, prey size may constrain female size (and possibly also male size). Regional differences in the abundance of prey during the growth of young weasels may affect adult size much more in males than in females and contribute to geographic variation in sexual dimorphism.  相似文献   

17.
Although sexual size dimorphism (SSD) is common among mammals, there is no clear explanation for its maintenance in nature. Bats are one of the few groups of mammals where reverse SSD appears. In this group, the size of individuals may have very important ecological consequences related with flight. In this study, we examine sexual dimorphism in the wing measurements of 195 adult individuals (141 males and 54 females) of the greater mouse‐eared bat Myotis myotis in the south‐east of the Iberian Peninsula. We also investigated size differences between paired and single males in a swarming roost. The results indicate that there are significant differences in the wing measurements between sexes, females being bigger than males in this respect. While no significant differences in the wing measurements of paired and single males were observed, significant differences were found in their relative weight and fitness, single males being significantly heavier and having a better physical condition. We discuss the implications of SSD for the female of M. myotis in terms of reproductive advantages, trophic niche segregation and a greater ability to move, which may favour gene flow between populations.  相似文献   

18.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

19.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

20.
Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life‐history allocation trade‐offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号