首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The generalist predation hypothesis predicts that the functional responses of generalist predator species should be quicker than those of specialist predators and have a regulating effect on vole populations. New interpretations of their role in temperate ecosystems have, however, reactivated a debate suggesting generalist predators may have a destabilizing effect under certain conditions (e.g. landscape homogeneity, low prey diversity, temporary dominance of 1 prey species associated with a high degree of dietary specialization). We studied a rich predator community dominated by generalist carnivores ( Martes spp., Vulpes vulpes, Felis catus ) over a 6 yr period in farmland and woodland in France. The most frequent prey were small rodents (mostly Microtus arvalis , a grassland species, and Apodemus spp., a woodland species). Alternative prey were diverse and dominated by lagomorphs ( Oryctolagus cuniculus, Lepus europeus ). We detected a numerical response among specialist carnivores but not among generalist predators. The dietary responses of generalist predators were fairly complex and most often dependent on variation in density of at least 1 prey species. These results support the generalist predation hypothesis. We document a switch to alternative prey, an increase of diet diversity, and a decrease of diet overlap between small and medium-sized generalists during the low density phase of M. arvalis . In this ecosystem, the high density phases of small mammal species are synchronous and cause a temporary specializing of several generalist predator species. This rapid functional response may indicate the predominant role of generalists in low amplitude population cycles of voles observed in some temperate areas.  相似文献   

3.
In a system with multiple predators, the threat‐sensitive predator avoidance hypothesis predicts that prey respond differently to predators relative to the risks each poses (e.g., degree of dietary specialization). Aquatic animals often rely heavily on detecting predators via chemical cues (kairomones) and respond with a suite of behaviors including detection and avoidance. However, little is known about how animals respond to kairomones of specialist versus generalist predators. In laboratory experiments, we compared behavioral responses of a poorly studied aquatic salamander, the greater siren (Siren lacertina), to cues from specialist and generalist predator snakes to evaluate threat‐sensitive responses. Sirens exhibited a novel behavior (gill‐flushing) most often in the presence of specialist predator cues. Avoidance behavior (reversing direction following cue detection) was higher in response to specialist predator and novel animal control cues and lowest in response to generalist predator cues. An intermediate response to the animal control, an unfamiliar amphibian predator, indicated that sirens respond cautiously to a novel cue. The gradient of observed responses to different snake cues indicates that sirens may be evaluating predation potential of animals based on their foraging specificity and familiarity.  相似文献   

4.
A resolution of the paradox of enrichment   总被引:1,自引:0,他引:1  
Theoretical studies have shown a paradoxical destabilizing response of predator-prey ecosystems to enrichment, but there is the gap between the intuitive view of nature and this theoretical prediction. We studied a minimal predator-prey system (a two predator-two prey system) in which the paradox of enrichment pattern can vanish; the destabilization with enrichment is reversed, leading to stabilization (a decrease in the amplitude of oscillation of population densities). For resolution of the paradox, two conditions must be met: (1) the same prey species must be preferred as a dietary item by both predator species, creating the potential for high exploitative competition between the predator species, and (2), while both predators are assumed to select their diet in accordance with optimal diet utilization theory, one predator must be a specialist and the other a generalist. In this system, the presence of a less profitable prey species can cause the increase in population oscillation amplitudes associated with increasing enrichment to be suppressed via the optimal diet utilization of the generalist predator. The resulting stabilization is explained by the mitigating effect of the less profitable prey showing better population growth with increasing enrichment on the destabilization underlying the specialist predator and prey relation, thus resolving the paradox of enrichment.  相似文献   

5.
Predators and megaherbivores have profound impacts on ecosystem structure and functioning. Following the reintroduction of apex predators (lion and spotted hyaena) into the Main Camp Section (Main Camp) of the Addo Elephant National Park (Addo – Eastern Cape, South Africa) populations of small (5–50 kg) prey species declined. Following the recent reintroduction of apex predators into the neighbouring Colchester Section, a similar decline in small prey species might have occurred. However, we predict that the dense nature of Thicket vegetation in Colchester has provided the small prey species a refuge from predation from the reintroduced apex predators. Using camera trap data collected over three years following the apex predator reintroduction into Colchester, we show that declines in small ungulate prey species have not taken place. The primary difference between these two sections at the time of the apex predator reintroduction was the state of the Thicket (dense vegetation type characteristic of both sections). Main Camp is characterized by fragmented Thicket that has been altered as a result of high elephant densities, whereas Colchester has intact Thicket following a long history of elephant absence. The fragmented Thicket in Main Camp allowed access to the Thicket habitats (as indicated by GPS collar data on lions), in which these small prey species reside, potentially increasing the predation on these species in Main Camp. The intact Thicket in Colchester, however, may provide a refuge away from the apex predators (and possibly meso-predators) for the small prey species. We suggest that the impact of predators on this prey community is conditional on the long history of ecosystem transformation by ecosystem engineers such as elephants.  相似文献   

6.
Apex predators may influence carnivore communities through the suppression of competitively dominant mesopredators, however they also provide carrion subsidies that could influence foraging and competition among sympatric mesopredators when small prey is scarce. We assessed coyote Canis latrans and red fox Vulpes vulpes winter diet overlap and composition from scats collected in two study areas with 3‐fold difference in grey wolf Canis lupus density due to a wolf control program. We hypothesized that differences in diet composition would be driven by the use of carrion, and tested whether 1) apex predators facilitate resource overlap, or 2) apex predators facilitate resource partitioning. We estimated the available biomass of snowshoe hares and voles based on pellet density and vole capture rates in each study area. We used molecular analysis to confirm species identification of predator scats, and used microscopic evaluation of prey remains to analyze diet composition of 471 coyote and fox scats. Ungulate carrion, voles and snowshoe hares comprised 73% of coyote and fox diet, and differences in use of carrion and microtines accounted for nearly 60% of the dissimilarity in diet among these canids. Carrion was the top‐ranked item in the coyote diet in both study areas, whereas carrion use by red foxes declined 3‐fold in the study area with higher wolf and small prey abundance. Diet overlap tended to be lower and diet diversity tended to be higher where wolves were more abundant, though these trends were not statistically significant. Taken together, our findings indicate that carrion provisions could facilitate resource partitioning in mesocarnivore communities by alleviating exploitation competition for small mammals.  相似文献   

7.
On the North Pacific feeding grounds, humpback whales (Megaptera novaeangliae) are recovering from commercial whaling at a rapid rate (6.8%). The potential effect that this recovery will have on trophic dynamics involving these predators is currently unknown. To better elucidate complex trophic dynamics, variability in diet composition of apex predators on their respective feeding grounds needs to be understood. Thus, we explored the diet composition of two defined subaggregations of humpback whales of the Kodiak Archipelago population (“North,” “South”) using stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin and regional prey samples in Bayesian dietary mixing models. Humpback whales in the “North” region consumed proportionally more fish, dominated by capelin (Mallotus villosus), whereas, whales in the “South” region consumed predominantly krill. The difference in diet composition appears to reflect regional differences in prey availability. Thus, regional variability in diet composition by humpback whales may have disproportionate impacts on prey resources of sympatric predators depending on available prey biomass. As a result, we suggest fine‐scale studies of apex predator diets are needed to better model trophic dynamics with accuracy.  相似文献   

8.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

9.
The presence of generalist predators is known to have important ecological impacts in several fields. They have wide applicability in the field of biological control. However, their role in the spatial distribution of predator and prey populations is still not clear. In this paper, the spatial dynamics of a predator–prey system is investigated by considering two different types of generalist predators. In one case, it is considered that the predator population has an additional food source and can survive in the absence of the prey population. In the other case, the predator population is involved in intraguild predation, i.e., the source of the additional food of the predator coincides with the food source of the prey population and thus both prey and predator populations compete for the same resource. The conditions for linear stability and Turing instability are analyzed for both the cases. In the presence of generalist predators, the system shows different pattern formations and spatiotemporal chaos which has important implications for ecosystem functioning not only in terms of their predictability, but also in influencing species persistence and ecosystem stability in response to abrupt environmental changes. This study establishes the importance of the consideration of spatial dynamics while determining optimal strategies for biological control through generalist predators.  相似文献   

10.
Organisms embedded within food webs must balance arms races with their predators and prey. For venom users, venom may mediate each arms race, but the dynamical evolutionary changes in venom production in response to the two arms races are still poorly understood. Here, we use a simple model to evaluate the evolutionary response of a venomous consumer to the presence of an apex generalist predator and evolution of the consumer’s prey. We find that introduction of the apex predator can weaken the arms race between the two lower trophic levels. In addition, when consumer prey capture and predator defense venoms functionally overlap, a reduced evolutionary response in the prey population can drive investment in venom used for prey capture going beyond what is optimal for subduing prey. These dynamics suggest that interactions with multiple trophic levels can substantially alter the venom complexity in predatory venomous animals and may explain the paradox of the overkill hypothesis.  相似文献   

11.
Human–predator conflict is one of the biggest threats to large carnivore species worldwide. Its intensity is closely linked to farmer's attitudes and perceptions of predators. As a result, farmers' estimates of the number of livestock or game‐stock animals killed by predators are often formed based on the perceived number of predators present and their perceivably favoured prey species. This study aims to examine the prey preferences of cheetahs Acinonyx jubatus in relation to farmers' perceptions and the relative contribution of livestock and game‐stock to the cheetahs' diet. Cheetahs' prey preferences were determined through the cross‐sectional analysis of prey hair, found in cheetah scat. Cheetahs were found to predominantly prey on free‐ranging abundant game species, primarily kudu Tragelaphus strepsiceros. Game ranchers overestimated the prominence of game‐stock to the cheetahs' diet, especially springbok Antidorcas marsupialis. Potential reasons for these discrepancies and the importance of abundant natural prey as a potential human–predator coexistence strategy are discussed.  相似文献   

12.
13.
Summary We compare the dynamics of predator-prey systems with specialist predators or adaptive generalist predators that base diet choice on energy-maximizing criteria. Adaptive predator behaviour leads to functional responses that are influenced by the relative abundance of alternate prey. This results in the per capita predation risk being positively density-dependent near points of diet expansion. For a small set of parameter values, systems with adaptive predators can be locally stable whereas systems with specialist predators would be unstable. This occurs mainly when alternate prey have low enough profitability that predators cannot sustain themselves indefinitely when feeding on alternate prey. Local stability of systems with adaptive predator behaviour is inversely related to the goodness of fit to optimal diet choice criteria. Hence, typical patterns of partial prey preference are more stabilizing than perfect optimal diet selection. Locally stable systems with adaptive predators are often globally unstable, converging on limit cycles for many initial population densities. The small range of parameter combinations and initial population densities leading to stable equilibria suggest that adaptive diet selection is unlikely to be a ubiquitous stabilizing factor in trophic interactions.  相似文献   

14.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

15.
We investigated the effects of predator diet breadth on the relative importance of bottom-up and top-down control of prey assemblages, using microbial food webs containing bacteria, bacterivorous protists and rotifers, and two different top predators. The experiment used a factorial design that independently manipulated productivity and the presence or absence of two top predators with different diet breadths. Predators included a "specialist" predatory ciliate Euplotes aediculatus, which was restricted to feeding on small prey, and a "generalist" predatory ciliate Stentor coeruleus, which could feed on the entire range of prey sizes. Both total prey biomass and prey diversity increased with productivity in the predator-free control and specialist predator treatments, a pattern consistent with bottom-up control, but both remained unchanged by productivity in the generalist predator treatment, a pattern consistent with top-down control. Linear food chain models adequately described responses in the generalist predator treatment, whereas food web models incorporating edible and inedible prey (which can coexist in the absence of predators) adequately described responses in the specialist predator treatment. These results suggest that predator diet breadth can play an important role in modulating the relative strength of bottom-up and top-down forces in ecological communities.  相似文献   

16.
Abstract: Apex predators are often threatened with extinction, and reintroduction is one method conservation managers are using to secure their persistence. Yet the ability to predict what these predators will eat upon reintroduction is lacking. Here we test predictions of the diet of the lion (Panthera leo), derived from dietary electivity index and optimality theory, using independent data collected from reintroduced and resident populations. We solved the Jacobs’ index preference equation for each prey species of the lion using values calculated by Hayward and Kerley (2005) and prey abundance data from 4 reintroduction sites and one resident lion population over several years. We then compared these estimates with actual kill data gathered from each site and time period, using the log-likelihood ratio and linear regression. The model precisely predicted the observed number of kills in 9 of the 13 tests. There was a highly significant linear relationship between the number of lion kills predicted to occur at a site and the number observed for all but one site (x̄r2 = 0.612; β = 1.03). Predicting predator diet will allow conservation managers to stop responding and start planning in advance for reintroductions and environmental variation. Furthermore, ensuring that sufficient food resources are available is likely to increase the success of reintroduction projects. In addition, managers responsible for threatened prey species will be able to predict the vulnerability of these species to predation in the event of predator reintroductions or changes in abundance. These methods are applicable to virtually all large predators that have been sufficiently studied.  相似文献   

17.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

18.
The extent to which persisting species may fill the functional role of extirpated or declining species has profound implications for the structure of biological communities and ecosystem functioning. In North America, arthropodivorous bats are threatened on a continent‐wide scale by the spread of white‐nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans. We tested whether bat species that display lower mortality from this disease can partially fill the functional role of other bat species experiencing population declines. Specifically, we performed high‐throughput amplicon sequencing of guano from two generalist predators: the little brown bat (Myotis lucifugus) and big brown bat (Eptesicus fuscus). We then compared changes in prey consumption before versus after population declines related to WNS. Dietary niches contracted for both species after large and abrupt declines in little brown bats and smaller declines in big brown bats, but interspecific dietary overlap did not change. Furthermore, the incidence and taxonomic richness of agricultural pest taxa detected in diet samples decreased following bat population declines. Our results suggest that persisting generalist predators do not necessarily expand their dietary niches following population declines in other predators, providing further evidence that the functional roles of different generalist predators are ecologically distinct.  相似文献   

19.
The spatial distribution of predators and their prey is affected by their joint use of space. While the formation of such spatial patterns may be driven by density‐dependent and ‐independent factors our knowledge on the contribution of different land‐use activities on the formation of spatial patterns between predators and prey remains very limited. Agriculture is one of the most prevailing land‐use activities with strong effects on invertebrate densities and structural habitat conditions. Here, we used replicated conventionally and organically managed winter wheat fields to investigate the effects of agricultural land‐use on the spatial patterns of generalist predators and decomposer prey. We then identified the explanatory power of density‐dependent (prey and predator activity density) and density‐independent (vegetation structure) predictors for the observed spatial patterns. Generalist predators were regularly distributed only in conventionally managed fields and this pattern intensified with decreasing Collembola prey availability and increasing spider activity density. Segregation between carabid and spider predators was strongest in fields with lowest wheat plant height, suggesting more intense intraguild interactions in structurally less complex habitats. Collembola were aggregated independent of management and aggregation was strongest in fields with highest Collembola and carabid activity density. Spiders and Collembola prey were associated, but higher aphid densities under conventional management weakened or interrupted this spatial relationship. We conclude that active control of crop plant physiognomy by growth hormones and herbicides in conventionally managed fields promotes predator–predator segregation and that a high availability of aphid prey seems to decouple predator–Collembola prey associations. Our results emphasise the need for a more mechanistic understanding of the effects of land‐use on the formation of spatial patterns and species interactions, especially under scenarios of environmental change and an ongoing loss of biodiversity.  相似文献   

20.
It is well known that young, small predator stages are vulnerable to predation by conspecifics, intra-guild competitors or hyperpredators. It is less known that prey can also kill vulnerable predator stages that present no danger to the prey. Since adult predators are expected to avoid places where their offspring would run a high predation risk, this opens the way for potential prey to deter dangerous predator stages by killing vulnerable predator stages. We present an example of such a complex predator–prey interaction. We show that (1) the vulnerable stage of an omnivorous arthropod prey discriminates between eggs of a harmless predator species and eggs of a dangerous species, killing more eggs of the latter; (2) prey suffer a minor predation risk from newly hatched predators; (3) adult predators avoid ovipositing near killed predator eggs, and (4) vulnerable prey near killed predator eggs experience an almost fourfold reduction of predation. Hence, by attacking the vulnerable stage of their predator, prey deter adult predators and thus reduce their own predation risk. This provides a novel explanation for the killing of vulnerable stages of predators by prey and adds a new dimension to anti-predator behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号