首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Questions: To what extent does species‐specific variation in gut passage time (GPT), habitat use and mobility of three key avian frugivores synergistically affect the distribution of Xymalos monospora seeds within and among isolated forest fragments? Location: Three fragments of a severely fragmented cloud forest, Taita Hills, southeast Kenya. Methods: We experimentally determined GPTs of X. monospora seeds and recorded movements and habitat use by Turdus helleri, Andropadus milanjensis and Tauraco hartlaubi through radiotelemetry, and combined these data to generate species‐specific seed dispersal patterns. Results: Differences in mobility and habitat use among the three frugivores caused significant complementarity in seed dispersal, despite the fact that gut transit times were highly comparable. While the most sedentary and forest‐dependent species mainly led to short‐distance dispersal away from parent trees, two more mobile species dispersed seeds further away from the source trees, both within indigenous forest patches and towards exotic plantations and isolated fruiting trees in the landscape matrix. A. milanjensis inhabiting a very small forest fragment spent significantly more time in the landscape matrix than conspecifics residing in the two larger fragments. Conclusions: By varying distances over which seeds are carried away from parent trees and the habitat types in which they are ultimately deposited, avian frugivores affect the spatial distribution of seeds and early plant recruits in a distinct and complementary manner. Because landscape properties are expected to lead to different constraints on avian mobility for habitat specialists and for generalists, ecosystem processes such as avian seed dispersal are shaped by complex interactions between disperser behaviour and the environment.  相似文献   

2.
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.  相似文献   

3.
Habitat fragmentation and disturbance are known to impact animals and plants in different ways, depending on species' characteristics and the type and scale of habitat modification involved. In contrast, direct or indirect ramifications on mutualistic relationships between plants and animals are less clear, possibly because general patterns are confounded by the diffuse nature of many of these interactions. Here, we examine how fragment size and/or severe disturbance of a Kenyan mountain cloud forest affects the frugivore community and seed removal of a large-seeded, bird-dispersed tree of the forest interior, for three consecutive years. Forest deterioration reduced avian visitation and seed removal rates independent of fragment size, consistently so despite strong temporal variation in fruit production over the three-year study. In disturbed forest fragments, seed removal rates were on average 3.5 times lower than in more intact ones. Strong differences in both visitation and seed removal rates were largely attributable to shifts in frugivore assemblages, characterized by loss or reduced abundance of the most effective seed dispersers, most of which were forest specialists. Although some disturbed fragments benefited from visits of non-forest dependent seed dispersers, such 'resilience' was not predictable or reliable in time or space. We conclude that disruption of seed disperser-seed interactions in highly fragmented and disturbed tropical forests may be persistent in time when resiliency is inadequate, possibly posing long-term effects on tree communities.  相似文献   

4.
An aggregated distribution of dispersed seeds may influence the colonization process in tree communities via inflated spatial uncertainty. To evaluate this possibility, we studied 10 tree species in a temperate forest: one primarily barochorous, six anemochorous and two endozoochorous species. A statistical model was developed by combining an empirical seed dispersal kernel with a gamma distribution of seedfall density, with parameters that vary with distance. In the probability density, the fitted models showed that seeds of Fagaceae (primarily barochorous) and Betulaceae (anemochorous) were disseminated locally (i.e. within 60 m of a mother tree), whereas seeds of Acer (anemochorous) and endozoochorous species were transported farther. Greater fecundity compensated for the lower probability of seed dispersal over long distances for some species. Spatial uncertainty in seedfall density was much greater within 60 m of a mother tree than farther away, irrespective of dispersal mode, suggesting that seed dispersal is particularly aggregated in the vicinity of mother trees. Simulation results suggested that such seed dispersal patterns could lead to sites in the vicinity of a tree being occupied by other species that disperse seeds from far away. We speculate that this process could promote coexistence by making the colonization rates of the species more similar on average and equalizing species fitness in this temperate forest community.  相似文献   

5.
We studied the influence of avian seed dispersal on the structuring of genetic diversity in a population of a tropical tree, Ocotea tenera (Lauraceae). The seeds of O. tenera are principally dispersed by four, relatively specialized, fruit-eating bird species (emerald toucanets, keel-billed toucans, resplendent quetzals, and three-wattled bellbirds). We found high genetic diversity within the overall population and significant, nonrandom structuring of that diversity among subpopulations. Subpopulations contained members of several sibling groups, and most saplings within subpopulations were shown not to be the progeny of adult trees within the same subpopulation. Our data indicate that O. tenera subpopulations are founded with several seeds from few maternal families, and that this mode of establishment is an important determinant of population genetic architecture.  相似文献   

6.
Dispersal is a key process in metapopulation dynamics as it conditions species' spatial responses to gradients of abiotic and biotic conditions and triggers individual and gene flows. In the numerous plants that are dispersed through seed consumption by herbivores (endozoochory), the distance and effectiveness of dispersal is determined by the combined effects of seed retention time in the vector's digestive system, the spatial extent of its movements, and the ability of the seeds to germinate once released. Estimating these three parameters from experimental data is therefore crucial to calibrate mechanistic metacommunity models of plant–herbivore interactions. In this study, we jointly estimated the retention time and germination probability of six herbaceous plants transported by roe deer (Capreolus capreolus), red deer (Cervus elaphus), and wild boar (Sus scrofa) through feeding experiments and a Bayesian dynamic model. Retention time was longer in the nonruminant wild boar (>36 h) than in the two ruminant species (roe deer: 18–36 h, red deer: 3–36 h). In the two ruminants, but not in wild boar, small and round seeds were excreted faster than large ones. Low germination probabilities of the excreted seeds reflected the high cost imposed by endozoochory on plant survival. Trait‐mediated variations in retention time and germination probability among animal and plant species may impact plant dispersal distances and interact with biotic and abiotic conditions at the release site to shape the spatial patterns of dispersed plant species.  相似文献   

7.
The distribution of wind‐dispersed seeds around a parent tree depends on diaspore and tree traits, as well as wind conditions and surrounding vegetation. This study of a neotropical canopy tree, Platypodium elegans, explored the extent to which parental variation in diaspore and tree traits explained (1) rate of diaspore descent in still air, (2) distributions of diaspores dispersed from a 40‐m tower in the forest, and (3) natural diaspore distributions around the parent tree. The geometric mean rate of descent in still air among 20 parents was highly correlated with geometric mean wing loading1/2 (r = 0.84). However, diaspore traits and rate of descent predicted less variation in dispersal distance from the tower, although descent rate−1 consistently correlated with dispersal distance. Measured seed shadows, particularly their distribution edges, differed significantly among six parents (DBH range 62–181 cm) and were best fit by six separate anisotropic dispersal kernels and surveyed fecundities. Measured rate of descent and tree traits, combined in a mechanistic seed dispersal model, did not significantly explain variation among parents in natural seed dispersal distances, perhaps due to the limited power to detect effects with only six trees. Seedling and sapling distributions were at a greater mean distance from the parents than seed distributions; saplings were heavily concentrated at far distances. Variation among parents in the distribution tails so critical for recruitment could not be explained by measured diaspore or tree traits with this sample size, and may be determined more by wind patterns and the timing of abscission in relation to wind conditions. Studies of wind dispersal need to devote greater field efforts at recording the “rare” dispersal events that contribute to far dispersal distances, following their consequences, and in understanding the mechanisms that generate them.  相似文献   

8.
The development of our understanding of population dynamics over the past 50 years is reviewed from a personal perspective. An early emphasis on population vital rates was superceded by recognition of the importance of the specific community context of focal populations, and most recently has in turn been enriched by a landscape perspective. Certain basic principles are outlined including the value of a systems context for population analyses, the power of a dual mechanistic and contextual perspective, and the inevitability of density control in a finite biosphere. Numbers are determined by the balance of two complex parameters:p — the per capita growth promoting (enhancing) forces, ands — the per capita growth suppressing forces. Multiple factor explanations of demographic behavior are therefore to be expected, as well as temporal and spatial variations in them. An appreciation for the potential role of dispersal as a population vital rate led to the development of metapopulation theory. A renewed understanding of the role of community context in population dynamics provoked the realization that a multi-factor approach was required. This in turn allowed us to reconcile the reality of local demographic complexity with global generalizations. Finally, the introduction of landscape ecology into demographic thinking added many new insights. It is now appreciated that a spatially explicit mosaic of habitat patches, edge effects, corridors, and even the proportion of favorable to marginal habitats can all be critically important factors in influencing population dynamics.  相似文献   

9.
Dunker  Bianca  Bull  C. Michael  Keith  David A.  Driscoll  Don A. 《Plant Ecology》2019,220(3):405-416
Plant Ecology - In temperate ecosystems, fire management involving prescribed burning and wildfire suppression often causes a shift in fire season from hot and dry summer conditions to cooler,...  相似文献   

10.
11.
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind-pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paranalpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006 m. The average number of effective pollen donors was estimated as 12.6. Mother-trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother-trees ranged from 0.35 to 291 m (with an average of 83 m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50 m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is long-distance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.  相似文献   

12.
13.
The composition of a seed flora always differs from actual vegetation. For archaeobotanists, who try to reconstruct former communities on the basis of plant macrofossils extracted from soil samples, this is a serious handicap. This difference can be explained by dispersal processes and by differences in preservation. Seeds that are incorporated into the soil may originate from both local and regional vegetation. Once incorporated, differences in preservation may result in a seed flora from a mixture of communities. The comparison may be further confounded when seeds that are transported over long distances are also of subfossil or even fossil origin. Both wind and water are effective agencies for long-distance dispersal. This study deals with the dispersal of botanical macro-remains by water. Water may be considered an important dispersal agent, especially in sites situated in the vicinity of running water, or liable to contact with water during storm surges or river floods. Therefore, the interpretation of seed assemblages from sediments that may have been in contact with running water needs special attention. In order to obtain information about the dispersal potential of plant remains by water transport, litter which had been transported by the river Rhine, and litter which had been washed ashore on the North Sea coast of the Netherlands was examined.  相似文献   

14.
Many carnivorous mammals consume fruits and disperse the intact seeds to specific sites. Few studies have attempted to quantify this seed dispersal or evaluate its effectiveness, despite its potential importance and functional uniqueness. In the study reported here, we found that a frugivorous carnivore, the common palm civet (Paradoxurus hermaphroditus), generated seed shadows that are distinct from those of the sympatric frugivore, the pig-tailed macaque (Macaca nemestrina), and played a unique and important role in the regeneration of Leea aculeata (Leeaceae). We found that macaques dispersed the seeds randomly, while civets dispersed them non-randomly to sites such as the banks of small rivers, rain-flow paths, abandoned trails, and treefall gaps, which are characterized by low stem density and canopy cover. Seeds of L. aculeata that were dispersed by civets to the banks of rivers and gaps had significantly higher survival and growth rates than those dispersed to rain-flow paths or abandoned trails. Seeds dispersed by macaques or to random locations also had low survival. Although the effects of the civets on seed fate were not straightforward, compared with macaques and random dispersal, civets significantly enhanced the survival and growth of L. aculeata seeds after 1 year. These results indicate that non-random dispersal by civets is important for the persistence of L. aculeata. Civets may disperse other plant species and thus could have profound effects on forest dynamics.  相似文献   

15.
Habitat loss and fragmentation often reduce gene flow and genetic diversity in plants by disrupting the movement of pollen and seed. However, direct comparisons of the contributions of pollen vs. seed dispersal to genetic variation in fragmented landscapes are lacking. To address this knowledge gap, we partitioned the genetic diversity contributed by male gametes from pollen sources and female gametes from seed sources within established seedlings of the palm Oenocarpus bataua in forest fragments and continuous forest in northwest Ecuador. This approach allowed us to quantify the separate contributions of each of these two dispersal processes to genetic variation. Compared to continuous forest, fragments had stronger spatial genetic structure, especially among female gametes, and reduced effective population sizes. We found that within and among fragments, allelic diversity was lower and genetic structure higher for female gametes than for male gametes. Moreover, female gametic allelic diversity in fragments decreased with decreasing surrounding forest cover, while male gametic allelic diversity did not. These results indicate that limited seed dispersal within and among fragments restricts genetic diversity and strengthens genetic structure in this system. Although pollen movement may also be impacted by habitat loss and fragmentation, it nonetheless serves to promote gene flow and diversity within and among fragments. Pollen and seed dispersal play distinctive roles in determining patterns of genetic variation in fragmented landscapes, and maintaining the integrity of both dispersal processes will be critical to managing and conserving genetic variation in the face of continuing habitat loss and fragmentation in tropical landscapes.  相似文献   

16.
17.
This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenylphenols on recruitment of Ectatomma to fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants.  相似文献   

18.
We conducted a functional analysis of seed dispersal and its plasticity in response to density in Arabidopsis thaliana by growing morphologically diverse ecotypes under high and low density and measuring seed dispersion patterns under controlled conditions. Maternal plant architectural traits such as height and branching, and fruit traits such as dehiscence and silique length influenced various measures of seed dispersion patterns, including the average dispersal distance, kurtosis of the seed dispersion pattern, and post-dispersal seed density. The density at which plants grew determined which traits influenced dispersal. A change in density would therefore change which maternal characters would be subjected to natural selection through selection on dispersal. Density-mediated maternal effects on dispersal contributed to a negative correlation between parents and offspring for sibling density after dispersal, which could impede the response to selection on post-dispersal sibling density. Plant traits that influenced dispersal also influenced maternal fitness- sometimes opposing selection on dispersal and sometimes augmenting it-and the direction of the relationship sometimes depended on density. These density-dependent relationships between plant traits, dispersal, and maternal fitness can increase or reduce evolutionary constraints on dispersal, depending on the trait and depending on post-dispersal density itself.  相似文献   

19.
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.  相似文献   

20.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号