首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The generally positive relationship between the number of sites a species occupies and its average abundance within those sites provides an important link between population processes occurring at different spatial scales. Although such abundance–occupancy relationships (AORs) have been documented across a very wide range of taxa and in many different environments, little is known of such patterns in Earth's largest ecosystem, the deep sea. Wood falls – derived from natural or anthropogenic inputs of wood into the oceans – constitute an important deep‐sea habitat, habouring their own unique communities ultimately entirely dependent on the wood for chemical energy. In this study we take advantage of the unique features of an experimental wood fall deployment to examine AORs for the first time in deep‐sea invertebrates. The study design combines advantages of both experimental (tractability, control of key environmental parameters) and observational (natural colonisation by taxonomically diverse communities) studies. We show that the interspecific AOR is strongly positive across the 48 species occurring over 32 wood fall communities. The precise form of the AOR is mediated by both species‐level life history (body size) and by the colonisation stage at which communities were harvested, but not by environmental energy (wood fall size). Temporal dynamics within species are also generally consistent with positive intraspecific AORs. This support for positive AORs in the deep sea is an important extension of a macroecological generality into a new environment offering considerable potential for further testing and developing mechanistic macroecological theories.  相似文献   

2.
A useful method for characterizing biological numerous assemblages at regional scales is the species occupancy frequency distribution (SOFD). An SOFD shows the number or proportion of study sites each species occurred. Species that occur at only a few sites are termed satellite species, while species that occur at many sites are termed core species.This study is the first to document and assess SOFD patterns in aquatic macrophytes. It characterizes SOFD patterns of freshwater macrophyte assemblages in Finland at two spatial and two temporal scales. For this, I analyzed three published datasets on freshwater macrophyte distributions: two from studies conducted at a local scale and the third from large national surveys. One local study and the national study also included data on temporal variation in species occupancy frequencies.In the national study, the number of core and satellite species varied slightly between the older and the newer survey, respectively. Among the 113 waterbodies surveyed as part of the national study, the SOFD followed a unimodal satellite pattern. However, for the older dataset (from the 1930s), a bimodal symmetric pattern also fit the SOFD data well. At the local scale, I observed geographical variation in SOFD patterns. The dataset from southern Finland followed a unimodal satellite SOFD pattern; data from central Finland instead displayed a bimodal symmetric SOFD pattern, although they also fit equally well with a bimodal truncated pattern. Moreover, temporal patterns in central Finland seemed to demonstrate a shift from a bimodal symmetric to a bimodal asymmetric SOFD probably.Geographical variation in the SOFD pattern may be due to variation in the regional species pool. The temporal changes in SOFD pattern may be due to lake eutrophication and anthropogenic disturbance around waterbodies, which may increase number of macrophyte species.  相似文献   

3.
We studied temporal and spatial dynamics of extremely diverse moth ensembles (Lepidoptera: Pyraloidea) along a gradient of forest disturbance ranging from undisturbed primary tropical rain forest to different kinds of modified forest and open cultivated land at the margin of Mount Kinabalu National Park (Sabah, East Malaysia). We sampled moths by light trapping during two periods (March‐May and August‐September 1997). We collected a total of 7724 individuals representing 680 species during 78 light‐trapping nights at six study sites. Species diversity (Fisher's α) of ensembles in undisturbed primary forest was distinctly higher than in disturbed or secondary forest. More pyraloid moths were attracted in undisturbed primary forest. Samples from disturbed primary or old‐growth secondary forest were statistically indistinguishable from the undisturbed primary forest ensemble in regard to species composition. Thus, pyraloid ensembles from disturbed forest with tall trees remaining appeared to represent impoverished subsets of the undisturbed primary forest community. The more heavily disturbed sites had a distinct fauna and showed a stronger faunal differentiation among each other. Four species of the genus Eoophyla, in which aquatic larvae feed on algae in fast‐running streams benefited prominently from forest disturbance. Temporal variation of ensembles was remarkably concordant across the disturbance gradient. Relative abundance variation of the commonest species was identical at all sites. Overall, pyraloid moths responded more sensitively to anthropogenic habitat alteration than most other moth taxa studied thus far in tropical regions and allowed for an analysis of diversity patterns at a high temporal resolution.  相似文献   

4.
Chen B  Kang L 《Oecologia》2005,144(2):187-195
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

5.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

6.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.  相似文献   

7.
Chronic anthropogenic disturbances (CAD) and rainfall are important drivers of plant community assembly, but little is known about the role played by inter‐ and intraspecific trait variation as communities respond to these pervasive forces. Here, we examined the hypothesis that lower precipitation and higher CAD reduce both intra‐ and interspecific trait variation in Caatinga dry forests. We sampled woody plants across 15 plots along precipitation and CAD gradients and measured resource‐use traits. The effects of precipitation and CAD on RaoQ functional diversity were decomposed into species turnover and intraspecific variability. We used “T‐statistics” to assess the trait sorting from the regional pool to local communities (i.e., external filtering), and within‐community forces leading to low trait overlap (i.e., internal filtering) at individual and species levels. Intraspecific variability explained at least one‐third of the total trait variation and 46% of variation in multitrait diversity across communities. Increasing disturbance reduced multitrait diversity, while precipitation affected some particular traits, such as wood density. Overall, precipitation determined species sorting across communities, while disturbance relaxed internal filters, leading to higher trait overlap within communities due to higher intraspecific variability. Our results suggest that the woody Caatinga flora contains a substantial amount of both inter‐ and intraspecific trait variation. This variation is not randomly distributed within and across communities, but varies according to rainfall conditions and disturbance intensity. These findings reinforce the emerging idea that human disturbances can reorganize plant communities at multiple scales and highlight trait variability as a key biological asset for the resilience of dry forests.  相似文献   

8.
Aim The majority of studies concerning positive interspecific abundance–occupancy relationships have used broad‐scale and microcosm data to test the occurrence and correlates of the relationship to determine which of the proposed mechanisms give rise to it. It has been argued recently that studying the residual variation about abundance–occupancy relationships is a more logical analysis and may yield faster progress in identifying the relative roles of the mechanisms. However, to date this approach has been largely unsuccessful. Here we test if fundamental species traits such as the status (native and introduced), habitat and trophic group of mammal and bird species may explain any of the residual variation about their respective abundance–occupancy relationships. Location The study used British mammal and bird species. Methods We tested if species traits explained any of the variation about abundance–occupancy relationships using linear regression techniques both treating species as independent data points for analysis and controlling for phylogenetic association. Results None of the species traits could explain any residual variation about the positive interspecific abundance–occupancy relationships of British mammals and birds. This applied both when treating species as independent data points and after controlling for phylogenetic association. Conclusions Given the lack of explanatory power of the species traits here and in other studies using this approach it seems that the variation about positive interspecific abundance–occupancy relationships is not explicable in a simple fashion. Predicting the likely influence of traits that are independent of phylogeny is also problematic. Therefore, the general utility of this approach and its future role in understanding the mechanisms causing positive interspecific abundance–occupancy relationships is doubtful.  相似文献   

9.
Positive abundance–occupancy relationships (AORs) are among the most general macroecological patterns: locally common species are regionally widespread, locally rare species are regionally restricted. In a recent contribution, Wilson (Global Ecology and Biogeography, 2011, 20 , 193–202) made three claims: (1) that AORs are critically dependent on the method used to calculate average abundance; (2) averaging abundance over occupied sites tends to lead to a very high incidence of negative relationships; (3) this represents a statistical artefact that should be considered in studies of AORs. Here we show that this outcome arises in Wilson's simulations purely due to an arbitrary choice of occupancy models and parameter ranges. The resulting negative relationships are not statistical artefacts, but are easily interpreted in terms of spatial aggregation in abundant species. The fact that empirical evidence fails to support a high prevalence of negative AORs suggests, however, that such parameter combinations arise only rarely in nature. We conclude that simulations that are based on untested assumptions, and that produce patterns unsupported by empirical evidence, have limited use in characterizing AORs, and add little to understanding of the processes driving important relationships between local population size and regional occupancy.  相似文献   

10.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

11.
Vertebrate populations are influenced by environmental processes that operate at a range of spatial and temporal scales. Wildfire is a disturbance that can affect vertebrate populations across large spatial scales, although vertebrate responses are frequently influenced by processes operating at smaller spatial scales such as topography, interspecific interactions and regional history. Here, we investigate the effects of a broad-scale wildfire on lizard assemblages in a desert region. We predicted that a rainfall gradient within the region affected by the wildfire would influence lizard responses to the fire by encouraging post-fire succession to proceed more rapidly in high-rainfall areas, and would be enabled in turn by more rapid vegetation recovery. To test our prediction, we censused lizards, measured rainfall, undertook vegetation surveys and sampled invertebrate abundance across burnt and unburnt habitat ecotones within three regional areas situated along a gradient of long-term annual rainfall. Lizard diversity was not affected by fire or region and lizard abundance was influenced only by region. Lizard assemblage composition was also only influenced by region, but this did not relate to differences in rainfall or habitat as we had predicted. Regional differences in lizard assemblages related instead to food availability. The observed differences also likely reflected regional differences in the strength of biotic interactions with predators and changes in land use. Our study shows that assemblage responses to a disturbance were not uniform within a large desert region and instead were influenced by other environmental processes operating simultaneously at multiple temporal and spatial scales.  相似文献   

12.
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001–2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.  相似文献   

13.
Abstract Spatial and temporal patterns of abundance of animals and plants must be quantified before models to explain distributions can be developed. These patterns also provide essential data for measuring potential effects of environmental disturbances. Studies in many different habitats have shown that most organisms, particularly invertebrates, have highly variable and interactive patterns of abundance, with much variability at the smallest temporal and spatial scales. Intertidal boulder fields in New South Wales, Australia, support a diverse fauna, many species of which are relatively rare. These habitats are commonly found near rock‐platforms and in sheltered estuaries and are subjected to many human disturbances. Although there have been a few studies on the fauna in boulder fields, none has documented variability of the assemblage using multivariate and univariate techniques and most studies have not incorporated different spatial and temporal scales. This study quantifies spatial variation at three scales (metres, tens of metres alongshore and tens of metres upshore) and temporal variation at two scales (3 months and 2 years) of the assemblage of molluscs and echinoderms in a sheltered boulder field subjected to little natural or human disturbance. Multivariate analyses revealed that each site contained a distinct assemblage, mainly due to the relative abundances of a few species. Most species, those generally only found under boulders and common, widespread species, had considerable spatial variability in abundances, with more than 90% measured at the smallest scale, that is metre to metre within a site. Changes in abundances over 3 months or 2 years varied among species and sites in unpredictable ways. These data show that sampling designs to measure impacts on these fauna will need to be complex and must incorporate a number of spatial and temporal scales if they are to be able to detect impact against such a variable background.  相似文献   

14.
Disturbances, such as fire and grazing, are often claimed to facilitate plant species richness and plant invasions in particular, although empirical evidence is contradictory. We conducted a meta‐analysis to synthesize the literature on how non‐native plant species are affected by disturbances. We explored whether the observed impact of disturbance on non‐native plant communities is related to its type and frequency, to habitat type, study approach (observational or experimental), and to the temporal and spatial scales of the study. To put the results in a broader context, we also conducted a set of parallel analyses on a data set involving native plant species. The diversity and abundance of non‐native plant species were significantly higher at disturbed sites than at undisturbed sites, while the diversity and abundance of native plant species did not differ between the two types of sites. The effect of disturbance on non‐native plant species depended on the measure used to evaluate the impact (species diversity or abundance) and on disturbance type, with grazing and anthropogenic disturbances leading to higher diversity and abundance of non‐native plant species than other disturbance types examined. The impact of disturbance on non‐natives was also associated with study approach, habitat type and temporal scale, but these factors covaried with disturbance type, complicating the interpretation of the results. Overall, our results indicate that disturbance has a positive impact particularly on non‐native plant species (at least when they are already present in the community), and that the strength of this impact depends primarily on the disturbance type. Synthesis Empirical evidence of the effect of disturbances on plant species richness is contradictory. Here we use a meta‐analysis to synthesize the published literature on how different types of disturbances influence the diversity and abundance of plant species, focusing in particular on non‐native plants. Our study supports the hypothesis that disturbances generally facilitate the diversity and abundance of non‐native plant species, although the strength of this facilitation depends primarily on the disturbance type.  相似文献   

15.
Prediction of community response of fauna to anthropogenic or environmental disturbance requires knowledge of faunal distribution and abundance as well as an understanding of the mechanisms underlying community organization. We investigated linkages between Lepidoptera, one of the most influential insect taxa in forested ecosystems, and vegetation in riparian areas of conifer-dominated forests of western Oregon, USA. Using model selection techniques, we found that canopy cover explained variability in patterns of moth species dominance and diversity better than all other factors investigated, whereas elevation best explained patterns of moth species richness. Using canonical correspondence analysis, we determined that gradients in shrub species richness, elevation, and understory species richness accounted for the most variation in regional moth community structure. Results suggest that reductions of riparian forest canopy are likely to have the greatest impact on the variety and relative abundance of moths. Due to the relative rarity and patchy distribution of the majority of individual species, we predict that lower intensity vegetation manipulations distributed across larger spatial scales are likely to be less damaging to regional moth biodiversity than more intensive alterations at smaller scales. Finally, if global warming trends continue, upward elevational shifts in moth species distributions will make forested regions at higher elevation worthy of concerted protection.  相似文献   

16.
大兴安岭呼中林区虫害与火干扰交互作用的长期模拟   总被引:1,自引:1,他引:0  
Chen HW  Hu YM  Chang Y  Bu R  Li YH  Liu M 《应用生态学报》2011,22(3):585-592
虫害和林火是森林生态系统的两种主要干扰类型,各种干扰在大时空尺度上存在一定的交互作用.本文采用空间直观景观模型LANDIS模拟虫害和林火在300年内的交互作用.结果表明:虫害干扰降低了细可燃物载量,提高了模拟前期(0~100 a)和中期(100~200 a)的粗可燃物载量,降低了模拟前期和中期的林火频率,不同干扰预案模拟后期(200~300 a)火烧频率的结果比较接近;虫害干扰降低了模拟前期和后期的火烧强度,增加了模拟中期的火烧强度,提高了模拟中期的森林火险等级,降低了模拟前期和后期的火险等级.人类灭火可增加虫害的发生面积,因此建议森林管理部门采取适当的防虫措施,不可只注重灭火,可以采取可燃物去除和计划火烧等方式管理林火,促进森林生态系统的可持续发展.  相似文献   

17.
The two major disturbance types of boreal black spruce forest in north–central Quebec, Canada – natural disturbance by wildfire and anthropogenic disturbance by harvest – may affect processes of recovery differently and leave distinct post‐disturbance soil and vegetation spatial patterns. We tested whether 1) spatial patterns of physico‐chemical soil organic layer properties, black spruce diameter and density, and understory ericaceous shrub cover, differ between these two principal disturbance types; 2) operations associated with forest harvest result in distinct, regular spatial patterns of these same variables related to presence of machine trails; and 3) ericaceous shrub presence is a potential factor contributing to the legacy of spatial patterns after harvest. We explored these patterns on black spruce‐feathermoss forest stands, including fire‐origin stands (18 and 98 years) and stands originating from harvest (16 and 62 years) in central Quebec, Canada. We used two spatial analysis methods, spectral analysis and principal component analysis in the frequency domain, to characterize and relate spatial patterns of these soil and vegetation variables, measured along 50‐m transects on each site. Spatial patterns of distribution of soil and vegetation variables were different on the burned and the harvested forest sites. Wildfire gave rise to spatial patterns in soil and vegetation variables at multiple scales, reflecting the complexity generated by variable burn intensity. Patterns following forest harvest were mainly related to the regular structure defined by trails created by logging operations. In contrast to burned sites, ericaceous shrub patterns on harvested sites were strongly associated with spatial arrangements of spruce diameter and density, promoting absence of canopy closure and persistence of trails. Moreover, different spatial signatures did not converge in the long‐term (62–98 years) between the two disturbance types. The divergence in spatial structure between natural and anthropogenic disturbances has implications for ecosystem structure and function in the longer term.  相似文献   

18.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

19.
Naiara Pinto  Timothy H. Keitt 《Oikos》2008,117(11):1725-1731
Despite vast evidence of species turnover displayed by Neotropical bat communities in response to forest fragmentation, the exact shape of the relationship between fragment area and abundance for individual bat species is still unclear. Bats’ ample variation in diet, morphology, and movement behaviour can potentially influence species’ perception of the landscape. Thus, studies describing fragment area at a single spatial scale may fail to capture the amount of forest available from the perspective of individual bat species. In the present paper, we study the influence of forest cover on bats inhabiting a fragmented forest in Mexico, focusing on some of the most common frugivore species: Artibeus jamaicensis, Carollia spp. (C. brevicauda/C. perspicillata) and Sturnira spp. (S. lilium/S. ludovici). We quantified forest cover at scales ranging from 50 to 2000 m, and measured the influence of forest cover on bat capture success, a surrogate for abundance. The three species displayed positive and significant scale‐dependent associations with forest cover. Abundance of A. jamaicensis increased with forest cover measured at scales ranging between 500 and 2000 m, while Carollia spp. responded more strongly to variation in forest cover measured at scales 100–500 m. For Sturnira spp., abundance was a function of presence of creeks near mist‐netting sites, and amount of secondary forest present at a 200 m scale. The observed variation in responses to forest cover can be explained in light of interspecific differences in diet, home range, and body size. Our results illustrate a method for measuring the effect of forest fragmentation on mobile species and suggest that changes in abundance in fragmented landscapes emerge from the interaction between species’ traits and landscape structure.  相似文献   

20.
Örjan  Östman  Jamie M  Kneitel  Jonathan M  Chase 《Oikos》2006,114(2):360-366
Isolated habitats generally have fewer species at local spatial scales than more connected habitats. However, over larger spatial scales, the response of species richness to variation in the degree of isolation is variable. Here, we hypothesized that the effects of habitat isolation on patterns of regional level species richness may depend at least in part on the level of disturbances those habitats receive. We tested this hypothesis in a microcosm experiment using an aquatic community consisting of container dwelling protists and rotifers by manipulating disturbance and dispersal to experimental regions factorially. In disturbed regions, regional species richness was lower in regions with isolated patches compared to regions where patches were experimentally connected by dispersal. A likely mechanism for this result is that dispersal from adjacent undisturbed local patches allowed disturbance-intolerant species a temporary refugia, thereby allowing regional coexistence of disturbance-tolerant and intolerant species. In contrast, without disturbances (and thus no temporal heterogeneity) it is likely that dispersal homogenized communities, leading to overall lower richness with higher dispersal. Our results emphasize the importance of simultaneously considering multiple limiting factors, disturbance and dispersal in this case, as well as the spatial scale of the response, in order to fully understand factors that control biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号