首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of our research is to understand reciprocal relationships between cell function and tissue organization. We studied the regulation of fibroblast activity in an in vitro culture model that recapitulates in continuous fashion the cycle of events occurring during connective tissue repair. We present evidence that concomitant with spatial reorganization of the extracellular matrix, there was a dramatic decline in extracellular matrix synthesis and cell proliferation. Therefore, spatial reorganization was a crucial turning point for fibroblast activity. Factors that regulated the timing of spatial reorganization included serum, transforming growth factor beta, and fibronectin. By accelerating spatial reorganization of the cultures, transforming growth factor beta led to a relative decrease in cell proliferation and extracellular matrix synthesis. By retarding spatial reorganization of the cultures, fibronectin led to a relative increase in cell proliferation and extracellular matrix synthesis. The results indicate that spatial information in the three-dimensional cell-matrix interaction permits higher order, tissue-level regulation of fibroblast function.  相似文献   

2.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

3.
Stromal cells are important regulators of mammary carcinoma growth and metastasis. We have previously shown that a 3T3-L1 adipocyte cell line secretes hepatocyte growth factor (HGF), which stimulates proliferation of a murine mammary carcinoma (SP1) in monolayer cultures (DNA Cell Biol.13, 1189–1897, 1994). We now examine the role of growth factors and the extracellular matrix protein fibronectin in stimulation of anchorage-independent growth of SP1 cells. Purified transforming growth factor-β (TGF-β) stimulated significant colony growth in soft agar cultures, whereas HGF had a lesser effect. Analysis by confocal microscopy revealed that carcinoma cell colonies contained extracellular microfibrils composed of fibronectin. Partial depletion of fibronectin from 7% FBS/agar cultures reduced the number of colonies; colony growth could be recovered by adding back exogenous fibronectin. Addition of the 70-kDa N-terminal fragment of fibronectin, which inhibits fibronectin fibril formation, reduced growth of SP1 cell colonies, but an 85-kDa fragment containing the cell binding domain did not inhibit colony growth. These findings indicate that deposition of extracellular fibronectin fibrils is necessary, but not sufficient, for anchorage-independent growth of SP1 mammary carcinoma cells; growth factors are also required. SP1 cells had less fibronectin mRNA and secreted less fibronectin protein under anchorage-independent conditions than under anchorage-dependent conditions, as determined by Northern blotting and immunoprecipitation analysis. Thus, both growth factors (HGF and TGF-β) and fibronectin may be important regulators of paracrine stimulation by stromal cells of anchorage-independent growth of mammary carcinoma cells.  相似文献   

4.
Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.  相似文献   

5.
We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-β1 (TGFβ1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGFβ1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGFβ1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGFβ1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGFβ1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGFβ1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest differentiation.  相似文献   

6.

Background

Pulmonary arterial hypertension is characterized by increased thickness of pulmonary vessel walls due to both increased proliferation of pulmonary arterial smooth muscle cell (PASMC) and deposition of extracellular matrix. In patients suffering from pulmonary arterial hypertension, endothelin-1 (ET-1) synthesis is up-regulated and may increase PASMC activity and vessel wall remodeling through transforming growth factor beta-1 (TGF-β1) and connective tissue growth factor.

Objective

To assess the signaling pathway leading to ET-1 induced proliferation and extracellular matrix deposition by human PASMC.

Methods

PASMC were serum starved for 24 hours before stimulation with either ET-1 and/or TGF-β1. ET-1 was inhibited by Bosentan, ERK1/2 mitogen activated protein kinase (MAPK) was inhibited by U0126 and p38 MAPK was inhibited by SB203580.

Results

ET-1 increased PASMC proliferation when combined with serum. This effect involved the mitogen activated protein kinases (MAPK) ERK1/2 MAPK and was abrogated by Bosentan which caused a G1- arrest through activation of p27(Kip). Regarding the contribution of extracellular matrix deposition in vessel wall remodeling, TGF-β1 increased the deposition of collagen type-I and fibronectin, which was further increased when ET-1 was added mainly through ERK1/2 MAPK. In contrast, collagen type-IV was not affected by ET-1. Bosentan dose-dependently reduced the stimulatory effect of ET-1 on collagen type-I and fibronectin, but had no effect on TGF-β1.

Conclusion and Clinical Relevance

ET-1 alone does not induce PASMC proliferation and extracellular matrix deposition. However, ET-1 significantly up-regulates serum induced proliferation and TGF-β1 induced extracellular matrix deposition, specifically of collagen type-I and fibronectin. The synergistic effects of ET-1 on serum and TGF-β1 involve ERK1/2 MAPK and may thus present a novel mode of action in the pathogenesis of pulmonary arterial hypertension.  相似文献   

7.
The way alternative splicing is regulated within tissues is not understood. A relevant model of this process is provided by fibronectin, an important extracellular matrix protein that plays a key role in cell adhesion and migration and contains three alternatively spliced regions known as EDI, EDII, and IIICS. We used a cell culture system to simulate mammary epithelial-stromal communication, a process that is crucial for patterning and function of the mammary gland, and studied the effects of extracellular signals on the regulation of fibronectin pre-mRNA alternative splicing. We found that soluble factors from a mammary mesenchymal cell-conditioned medium, as well as the growth factors HGF/SF (hepatocyte growth factor/scatter factor), KGF (keratinocyte growth factor), and aFGF (acidic fibroblast growth factor), stimulate EDI and IIICS but not EDII inclusion into fibronectin mRNA in the mammary epithelial cell line SCp2, favoring fibronectin isoforms associated with proliferation, migration, and tissue remodeling. We explored the signaling pathways involved in this regulation and found that the mammary mesenchymal cell-conditioned medium and HGF/SF act through a phosphatidylinositol 3-kinase-dependent cascade to alter fibronectin alternative splicing. This splicing regulation is independent from promoter structure and de novo protein synthesis but does require two exonic elements within EDI. These results shed light on how extracellular stimuli are converted into changes in splicing patterns.  相似文献   

8.
Ascorbic acid has been shown to stimulate collagen synthesis in monolayer cultures of human dermal fibroblasts. In the present studies, we examined whether the presence of a collagen matrix influences this response of dermal fibroblasts to ascorbic acid. Fibroblasts and collagen were mixed and allowed to gel and contract for 6 days to form a matrix prior to determining the concentration and time dependence for ascorbic acid to affect collagen synthesis by fibroblasts within the matrix. Collagen synthesis was stimulated at levels at or above 10 μM ascorbic acid and was maximal after 2 days of treatment. This concentration and time dependence is similar to that of cells grown in monolayer cultures. The effects of transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) were also examined in this model. TGF-β increased and FGF inhibited collagen synthesis in the gels, as has been shown for cells in monolayer cultures. The effects of potential inhibitors of lipid peroxidation induced by ascorbic acid were also examined in these matrices and compared to previous results obtained in monolayer cultures. Propyl gallate, cobalt chloride, α,α-dipyridyl, and α-tocopherol inhibited the ascorbic acid-mediated stimulation of collagen synthesis while mannitol had no effect. Natural retinoids inhibited total protein synthesis without the specific effect on collagen synthesis that was seen in monolayer cultures. These results indicate that ascorbic acid stimulates collagen synthesis in fibroblasts grown in a collagen matrix in a manner similar to that found in monolayer cultures. In contracting collagen gels, however, the magnitude of the effect is less and retinoids do not specifically inhibit collagen synthesis.  相似文献   

9.
10.
During wound repair, fibroblasts accumulate in the injured area until any defect is filled with stratified layers of cells and matrix. Such fibroplasia also occurs in many fibrotic disorders. Transforming growth factor-β (TGF-β), a promotor of granulation tissue in vivo and extracellular matrix production in vitro, is expressed during the active fibroplasia of wound healing and fibroproliferative diseases. Under usual tissue culture conditions, normal fibroblasts grow to confluence and then cease proliferation. In this study, culture conditions with TGF-β1 have been delineated that promote human fibroblasts to grow in stratified layers mimicking in vivo fibroplasia. When medium supplemented with serum, ascorbate, proline, and TGF-β was added thrice weekly to normal human dermal fibroblasts, the cells proliferated and stratified up to 16 cell layers thick within the culture dish, producing a tissue-like fibroplasia. TGF-β stimulated both DNA synthesis as measured by 1H-thymidine uptake and cell proliferation as measured by a Hoechst dye DNA assay in these postconfluent cultures. The stratification was dependent on fibronectin assembly, as demonstrated by anti-fibronectin antibodies which inhibited both basal and TGF-β-stimulated cell proliferation and stratification. Suppression of collagen matrix assembly in cell layers with β-amino-proprionitrile (BAPN) did not inhibit basal or TGF-β stimulated in vitro fibroplasia. BAPN did not interfere with fibronectin matrix assembly as judged by immunofluorescence microscopy. Thus, in concert with serum factors, TGF-β stimulates postconfluent, fibronectin matrix-dependent, fibroblast growth creating a fibroplasia-like tissue in vitro. J Cell Physiol 170:69–80, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

11.
Expression of several cellular and matrix proteins which increase significantly during the maturation of growth plate cartilage has been shown to be affected by various endocrine and autocrine factors. In the studies reported here, transforming growth factor-beta (TGF-beta 1) and basic fibroblast growth factor (bFGF) were administered to primary cultures of avian growth plate chondrocytes at pre- or post-confluent stages to study the interplay that occurs between these factors in modulating chondrocytic phenotype. Added continuously to pre-confluent chondrocytes, TGF-beta 1 stimulated the cells to produce abundant extracellular matrix and multilayered cell growth; cell morphology was altered to a more spherical configuration. These effects were generally mimicked by bFGF, but cell shape was not affected. Administered together with TGF-beta 1, bFGF caused additive stimulation of protein synthesis, and alkaline phosphatase (AP) activity was markedly, but transiently enhanced. During this pre-confluent stage, TGF-beta 1 also increased fibronectin secretion into the culture medium. Added to post-confluent cells, TGF-beta 1 alone caused a dosage-dependent suppression of AP activity, but bFGF alone did not. Under these conditions, TGF-beta 1 and bFGF had little effect on general protein synthesis, but TGF-beta 1 alone caused large, dosage-dependent increases in synthesis of fibronectin, and to some extent type II and X collagens. Given together with bFGF, TGF-beta 1 synergistically increased secretion of fibronectin. These findings reveal that regulation of phenotypic expression in maturing growth plate chondrocytes involves complex interactions between growth factors that are determined by timing, level, continuity, and length of exposure.  相似文献   

12.
We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular collagen and fibronectin fibril deposition. Matrix fibronectin and collagen deposition remained decreased in cultures containing anti-60k Fab' until cells became bilayered or more dense, when fibronectin and collagen began to appear in lower cell layers. Anti-60k Fab' added to confluent cultures 24 h before fixation and staining had no effect on matrix fibronectin or collagen, so anti- 60k Fab' did not simply block immunostaining. Confluent cultures grown in anti-60k Fab' and labeled for 24 h with [3H]proline incorporated identical amounts of [3H]proline and [3H]hydroxyproline, but [3H]hydroxyproline deposition in the cell layer was significantly decreased by anti-60k Fab' (P less than 0.01). Extracellular matrix collagen does not appear to form a scaffold for fibronectin deposition, as neither gelatin nor a gelatin-binding fragment of plasma fibronectin inhibited deposition of matrix fibronectin. Our results suggest that interstitial collagens and fibronectin interact to form a fibrillar component of the extracellular matrix, and that fibronectin is required for normal collagen organization and deposition by fibroblasts in vitro. Domain-specific antibodies to fibronectin are powerful tools to study the biological role of fibronectin in extracellular matrix organization and other processes.  相似文献   

13.
14.
Velleman SG  McFarland DC 《Cytobios》1999,100(394):101-110
Expression, and temporal and spatial distribution of type I collagen were investigated in chicken satellite cell cultures during differentiation. There was no difference in the relative amounts of type I collagen after treatment with basic fibroblast growth factor (FGF), insulin-like growth factor-I (IGF-I), or transforming growth factor beta 1 (TGF-beta 1). However, myotube morphology was influenced by the presence of the growth factors. The temporal and spatial distribution of type I collagen was also modified. Control cultures maintained a predominant distribution of type I collagen surrounding the cellular area until approximately 48 h after the initiation of fusion whereas cultures with FGF or IGF-I maintained a cellular localization of type I collagen throughout the fusion process. TGF-beta 1 resulted in the early formation of an extracellular network of type I collagen preceding control cultures by approximately 24 h. These results suggest that type I collagen expression but not localization is independent of satellite cell proliferation and differentiation.  相似文献   

15.
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in α5β1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes α5β1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605–709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.  相似文献   

16.
Trypsin, thrombin, and peptide analogues of the new amino terminus of the proteolyzed thrombin receptor, SFLLRN and SFLLRNPNDKYEPF, stimulated embryonic fibroblasts cultured as 3-dimensional tissue-like aggregates to elaborate a fibronectin-rich extracellular matrix. Enzymatically inactive thrombin and the control peptide FLLRN failed to stimulate matrix production. The induction of cell proliferation correlated with production of the fibronectin matrix. The regions of active cell proliferation in the fibroblast aggregates co-localized with the matrix and peptide analogues of the RGD cell-adhesion site of fibronectin reversibly inhibited the accumulation of the fibronectin matrix and the stimulation of cell proliferation by SFLLRN. Two different preparations of the fibronectin matrix stimulated cell proliferation in aggregates cultured in growth factor-free medium. We suggest that the stimulation of matrix production is a necessary event for mitogenic signaling in mesenchymal tissue. The tight coupling between the matrigenic and mitogenic activities of growth factors was absent in monolayer cultures of chick embryonic fibroblasts since thrombin and trypsin induced proliferation of monolayer-cultured cells without inducing the production of a fibronectin matrix. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

18.
Development of fibrosis involves an increase in the deposition of connective tissue components including collagens, fibronectin and proteoglycans. One hypothesis to account for matrix deposition in fibrosis is that fibroblast with differing matrix producing capacity are involved in the fibrotic process. To test this hypothesis, primary fibroblast cultures and clones derived from these primary lines were established from the lung tissue of control patients and patients with pulmonary fibrosis. The primary lines and derived clones were studied in relation to their capacity to proliferate and to produce proteoglycans and hyaluronan. Primary fibroblast cultures and clones from normal subjects and patients with lung fibrosis differed considerably, with up to 13-fold difference, in both hyaluronan and proteoglycan production. The major proteoglycan produced was decorin in both controls and cultures from fibrotic patients, while cultures from patients with lung fibrosis had a higher expression of mRNA for both collagen and decorin. Clones derived from a primary line from a fibrotic patient secreted 3-fold greater amounts of decorin than those from a control subject. Furthermore, a negative correlation between proliferation and synthesis of decorin was noted. We suggest that different fibroblast clones accumulate in the lung, and that specific cell populations of high decorin producing fibroblasts may exist which are crucial in the pathogenesis of fibrosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号