首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

2.
Limberger R  Wickham SA 《Oecologia》2012,168(3):785-795
The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern.  相似文献   

3.
In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indirectly through changes in resource abundance and availability. In North American tallgrass prairies, fire and grazing often have disparate effects on plant resources and plant diversity, yet, little is known about the individual and interactive effects of fire and grazing on resource variability and how that variability relates to heterogeneity in plant community structure, particularly at small scales. We conducted a field study to determine the interactive effects of different long-term fire regimes (annual vs four-year fire frequency) and grazing by native ungulates ( Bos bison ) on small-scale plant community structure and resource variability (N and light) in native tallgrass prairie. Grazing enhanced light and nitrogen availability, but did not affect small-scale resource variability. In addition, grazing reduced the dominance of C4 grasses which enhanced species richness, diversity and community heterogeneity. In contrast, annual fire increased community dominance and reduced species richness and diversity, particularly in the absence of grazing, but had no effect on community heterogeneity, resource availability and resource variability. Variability in the abundance of resources showed no relationship with community heterogeneity at the scale measured in this study, however we found a relationship between community dominance and heterogeneity. Therefore, we conclude that grazing generated small-scale community heterogeneity in this mesic grassland by directly affecting plant community dominance, rather than indirectly through changes in resource variability.  相似文献   

4.
Herbaceous plants contribute much to plant diversity in Mediterranean-type ecosystems though mostly occupying relatively small patches within the dense woody vegetation. While studying species diversity in the herbaceous patches, we hypothesized that grazing, soil seed bank, and spatial properties of the patch affect plant diversity and composition at different spatial scales. The study site was in an LTER site located in the Mediterranean region in north Israel. We determined herbaceous species composition in: (1) randomly sampled quadrats in herbaceous patches in grazed and un-grazed plots; (2) soil seed bank samples taken from the same patches and germinated under optimal greenhouse conditions; (3) quadrats in the same patches sown with a homogenous mixture of local soil samples. Using GIS methods, we determined small-scale spatial characteristics of the herbaceous patches. Alpha and beta diversities were calculated at the patch and plot scales using Shannon's entropy H. Grazing increased alpha diversity of local untreated seed bank samples but decreased alpha diversity of the artificial homogenous soil seed bank mixture at both patch and plot scales. Positive relation between alpha diversity and patch area was detected only under grazing. Grazing increased beta diversity in all three treatments at the patch scale. Grazing decreased the similarity in species composition between above-ground vegetation and soil seed bank. The results indicate that moderate cattle-grazing affects species diversity in the herbaceous patches within the dense maquis. This effect is scale-dependent, and interacts with the effects of soil seed bank and patch spatial-properties: without grazing soil seed bank plays a more important role than patch spatial properties, but under grazing the size and the accessibility of the patch are more important in the determination of herbaceous species composition.  相似文献   

5.
为了揭示高寒小嵩草草甸群落在放牧扰动下,探讨土壤养分供给水平的变化对生态系统初级生产力和多样性影响,为高寒草地的退化演替机理研究提供依据,以野外样地调查和室内分析法研究了放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应.结果表明,放牧干扰不仅改变了高寒小蒿草草甸群落土壤根系和蕴育土壤根系的"载体"量及根土比例,改变了植物群落的结构和功能,而且使土壤的物理和化学特性发生了明显的改变.随着放牧强度的增加,蕴育土壤根系的基质量逐渐减少,根土比特别是0~10 cm土层的根土比例增加;"载体"量减少导致大部分地下根系由于营养供给水平的降低而死亡,归还土壤中有机质的数量逐渐减少,加之地上部分持续利用,土壤养分也在不断消耗,土壤基质量的减少和土壤资源持续供给能力的下降,草地发生逆向演替(退化),表现在:物种数减少、多样性下降、能量的分配转向地下等;土壤性状上的某些改变(土壤容重、土壤湿度等),也会引起植被组成、物种多样性变化;放牧主要通过影响土壤环境及其养分含量来改变草地群落生物量(地上、地下);土壤表面的适度干扰和原有植物的适度破坏为新成员提供了小生境,从而允许新的植物侵入群落,并提高了植物的丰富度.但是,在受到强度干扰时,草地植物群落的主要物种的优势地位发生明显的替代变化.  相似文献   

6.
Seed germination and seedling emergence are key processes for population recruitment. Flooding and grazing are disturbances forming gaps that may strongly influence recruitment patterns in space and time, but their combined effects and action mechanisms have rarely been addressed. In this study we analysed the effects of microhabitat conditions associated with winter flooding and spring‐summer defoliation on seed germination and seedling establishment of Paspalum dilatatum, a dominant perennial C4 grass in native grasslands of the Flooding Pampa, Argentina. The dynamics of seedling emergence from natural seed banks and buried seeds was studied in a factorial experiment with flooding and defoliation treatments applied to soil monoliths (mesocosms) collected from natural grassland. Additional laboratory experiments were applied to investigate seed germination under different combinations of temperature, light quality and simulated flooding. Seed germination and seedling emergence of P. dilatatum were promoted by flooding and high intensity defoliation. Gaps generated by flooding were maintained by high intensity defoliation exercising a synergistic effect on survival seedlings. Flooding resulted in the breaking of seed dormancy and higher germination rates associated with alternating temperature and the activation of the phytochrome system. Our results indicate that microhabitat conditions associated with the disturbances forming gaps, such as flooding and heavy grazing, synergistically promote the recruitment process of this dominant grass species.  相似文献   

7.
A theoretical framework and conceptual model for temporal stability of forest tree-species composition was developed based on a synthesis of existing studies. The model pertains primarily to time periods of several tree lifetimes (several hundred to a few thousand years) at the neighborhood and stand spatial scales (0.01–10 ha), although a few extensions to the landscape scale are also made. The cusp catastrophe was chosen to illustrate compositional dynamics at the stand level for jack pine, northern hardwood, and white pine forests in the Great Lakes Region of the United States and for tropical rainforests in the northern Amazon basin. The models feature a response surface (degree of dominance by late-successional species) that depends on two variables: type of neighborhood effects of the dominant tree species and severity of disturbances. Neighborhood effects are processes that affect the chance of a species replacing itself at the time of disturbance (they can be positive, neutral, or negative) and are of two types: overstory–undestory effects, such as the presence of advanced reproduction; and disturbance-activated effects, such as serotinous seed rain. Disturbance severity is the proportion of trees killed during a disturbance. Interactions between neighborhood effects and disturbance severity can lead to either punctuated stability (dramatic but infrequent change in composition, in those forests dominated by species with positive neighborhood effects) or succession (continuous change, in those forests dominated by species with neutral-negative neighborhood effects). We propose that neighborhood effects are a major organizing factor in forest dynamics that provide a link across spatial scales between individual trees and disturbance/patch dynamics at the stand and landscape scales. Received 23 June 1998; accepted 16 December 1998.  相似文献   

8.
荒漠植被植物种多样性对空间尺度的依赖   总被引:8,自引:1,他引:8  
物种多样性与空间尺度的关系是植物生态学的一个研究热点。传统植物生态学研究认为种面积曲线方程中 Z值是个近似常数 ,但近期对森林和草原群落的研究表明 Z是随尺度变化的。在荒漠带选择了 10个样地 ,每个样地包括 1m2 到 1km2 的 6个空间尺度样方 ,研究荒漠地区物种多样性与空间尺度的关系。结果表明 :荒漠植被物种多样性随空间尺度的增大空间依赖性减弱 ,Z也是随尺度变化的。对荒漠植被种面积曲线 Z的研究结果支持了 Z随尺度变化的结论 ,但 Z是随尺度增加而减小 ,斜率 z值从 0 .37降至 0 .0 35 ,与草原和森林群落 Z值随尺度增加而增加的结论是相反的。  相似文献   

9.
We present results from an ongoing field study conducted in Kansas grassland to examine correlates of invasibility and community stability along a natural gradient of plant diversity. Invasibility was evaluated by sowing seeds of 34 plant species into 40 experimental plots and then measuring colonization success after two growing seasons. Compositional stability, defined as resistance to change in species relative abundances over two growing seasons and in response to experimental disturbance, was measured in a separate set of 40 plots.
We found that community susceptibility to invasion was greatest in high diversity microsites within this grassland. Multiple regression analyses suggested that the positive correlation between invasibility and plant diversity was due to the direct influences of the extrinsic factors that contribute to spatial variation in diversity (soil disturbances; light availability), not to any direct impact of diversity. In addition, we found that compositional stability in response to disturbance was greatest within low diversity microsites and was strongly related to the dominance (evenness) component of diversity.  相似文献   

10.
Joris P. G. M. Cromsigt  Han Olff 《Oikos》2008,117(10):1444-1452
Grazing lawns are characteristic for African savanna grasslands, standing out as intensely grazed patches of stoloniferous grazing‐tolerant grass species. Grazing lawn development has been associated with grazing and increased nutrient input by large migratory herds. However, we argue that in systems without mass migrations disturbances, other than direct grazing, drive lawn development. Such disturbances, e.g. termite activity or megaherbivore middens, also increase nutrient input and keep the bunch vegetation down for a prolonged time period. However, field observations show that not all such disturbances lead to grazing lawns. We hypothesize that the initial disturbance has to be of a minimal threshold spatial scale, for grazing intensity to be high enough to induce lawn formation. We experimentally tested this idea in natural tall savanna grassland. We mowed different‐sized plots to simulate initial disturbances of different scales (six times during one year) and applied fertilizer to half of the plots during two years to simulate increased nutrient input by herbivores or termite activity. Allowing grazing by naturally occurring herbivores, we followed the vegetation development over more than three years. Grazing kept bunch grass short in coarser, fertilized plots, while grasses grew out toward their initial height in fine‐scale and unfertilized plots. Moreover, lawn grasses strongly increased in cover in plots with an increased nutrient input but only after coarser scale disturbance. These results support our hypothesis that an increased nutrient input in combination with grazing indeed induces grazing lawn formation, but only above a threshold scale of the initial disturbance. Our results provide an alternative mechanism for the development of grazing lawns in systems that lack mass migrating herds. Moreover, it gives a new spatial dimension to the processes behind grazing lawn development, and hence help to understand how herbivores might create and maintain spatial heterogeneity in grassland systems.  相似文献   

11.
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi‐arid eastern Australia. Vegetation response was influenced by winter–spring drought after establishment of the experiments, but moderate rainfall followed in late summer–autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post‐fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once‐off nature of the treatment, and the high degree of natural movement and cracking in these shrink‐swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla‐ and Dichanthium‐dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).  相似文献   

12.
放牧对脆弱的荒漠草原生态系统有着重要影响,且随放牧强度及持续时间不同而变化。鞘翅目昆虫是环境监测与生物多样性变化的指示生物。利用巴氏罐诱法对短花针茅荒漠草原不同放牧强度草地的甲虫群落组成和多样性进行调查,探究放牧对荒漠草原甲虫群落的影响。结果表明:(1)步甲科、金龟科为短花针茅荒漠草原甲虫群落优势类群,埋葬甲科、芫菁科、拟步甲科和花金龟科为常见类群。(2)放牧强度增加不利于维持更多的捕食性甲虫;对照和轻度放牧样地可维持更多的腐食性甲虫。(3)甲虫数量随放牧强度增加而递减;群落多样性以重度放牧草地最大,轻度放牧草地最小;群落优势度为对照、中度、重度显著高于轻度放牧草地。各甲虫类群在不同放牧强度草地出现时间、高峰期均不同。(4)对照、轻度、重度放牧样地的甲虫优势类群群落结构不同于其他生境,但均与中度放牧样地存在相似性。轻度、中度、重度放牧样地的甲虫稀有类群群落结构不同于其他生境,但均与对照样地存在相似性。(5)甲虫群落个体数与植物群落物种丰富度、盖度、植物平均高度、生物量呈显著正相关。Shannon-Wiener多样性指数、Margalef丰富度指数均与植物群落物种丰富度、生物量显著负相关。研究结果为荒漠草原甲虫多样性保护提供参考依据。  相似文献   

13.
Large herbivores can change ecosystem functioning by impacting plant diversity. However, although such impacts are expected to be scale-dependent in ecosystems with wide-roaming ungulates, scaling issues rarely enter empirical assessments. We here test the hypothesis that the impact of increased reindeer abundance on plant diversity in alpine tundra is scale-dependent. Based on potentially high productivity of the focal habitat units and hence the possibility of positive grazer impacts on plant diversity we predicted higher α and β diversity at the habitat scale where reindeer densities are high. We also explored whether there were differences in diversity patterns at larger scales, including the scale of reindeer management districts. We estimated grazing disturbance as high versus low reindeer density in selected districts (a total extent of 7421 km2) of Northern Norway where reindeer-induced vegetation shifts are debated. We focus on dominance patterns because they can quantify the vegetation state and thus performed additive partitioning of Simpson diversity on multiple scales assessing also species’ contributions to diversity. Contrary to our predictions, we found only weak scale-dependent effects of reindeer grazing on plant diversity. Under high reindeer densities there was evidence for a landscape-scale homogenization of the vegetation, but the predicted α and β diversity increases at the habitat scale were not found. Consistently through all scales considered, four shrub species contributed the most to plant diversity. These results contradict the idea that reindeer at high stocking densities induce shifts in plant species dominance in productive habitats. We conclude that context-dependencies such as spatial scales of management units and habitat types need to be explicitly considered in evaluations of the impacts of large ungulates on plant diversity.  相似文献   

14.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

15.
Spatial patterns of species diversity have important influences on the functioning of ecosystems, and the effect of livestock grazing on spatial heterogeneity can differ depending on the scale of the analysis. This study examined the effects of grazing on the spatial patterns of species distributions and whether the effects of grazing on the spatial distributions of a species vary with the scale of the analysis. Data were collected at three locations in the subalpine grasslands of Ordesa-Monte Perdido National Park and Aísa Valley, Central Pyrenees, Spain, which differed in mean stocking rates. Aspect explained about one-third of the environmental variation in species distributions. In flat areas, spatial variation in species composition varied with grazing intensity at two scales. At a coarse scale (among vegetation patches), grazing promoted patchiness, and among-transect variation in species diversity and grazing intensity were positively correlated. At a fine scale (within vegetation patches), the disruption of the self-organizing processes of the species spatial distributions resulted in a reduction in the long-range spatial autocorrelations of some of the characteristic species and in the homogenization of species spatial distributions. The presence of encroaching Echinospartum horridum had a significant influence on the effect of grazing on south-facing grassland slopes.  相似文献   

16.
采用样带与样地结合的方法在三江源自然保护区的核心区沿海拔梯度在阴坡、阳坡分别进行草本植被调查,通过因子分析和偏相关分析研究丰富度指数、多样性指数与环境梯度(包括海拔梯度、裸斑面积、坡度、土壤总碳、总氮含量、土壤pH值、土壤总可溶性盐含量)和干扰强度(鼠类干扰强度、放牧强度)之间的关系。研究结果表明:杂类草丰富度指数(DMa杂)与总物种丰富度指数(DMa总)极显著相关(P<0.01);阳坡DMa杂和DMa总均呈现“中海拔膨胀”现象,阴坡DMa杂和DMa总与海拔梯度呈正相关,莎草科和禾本科的丰富度指数(DMa莎和DMa禾)随海拔升高并无明显规律;通过主成分分析,及偏相关分析,第一主成分(裸斑面积、鼠类干扰和放牧强度)与除莎草科Margalef丰富度指数、禾本科Simpson指数和禾本科Pielou均匀度指数外的其他草地多样性指数均显著相关,是影响阳坡草地植物多样性的主要因子,土壤总碳、总氮含量对阳坡禾本科类群的多样性指数和均匀度指数有极显著影响,土壤pH值、TDS含量和坡度对阳坡莎草科类群的丰富度有显著影响;海拔梯度、土壤总碳、总氮以及pH值对阴坡草本植物群落的多样性影响较大。研究结论认为,植物群落生物多样性的空间分异特征是地理环境、土壤环境以及干扰强度等因素综合作用的结果。无干扰或干扰较弱时,物种多样性主要受土壤环境状况所影响;而在强干扰存在条件下,干扰强度对物种丰富度和多样性的影响比环境因子更显著;遏制高寒草甸植物多样性降低应首先控制放牧及鼠类等强干扰活动。  相似文献   

17.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai‐Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter‐ and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra‐ and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter‐ and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter‐ and intraspecific aggregation produces local spatial patterns that scale‐up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.  相似文献   

18.
放牧后自然恢复沙质草地土壤节肢动物群落结构与多样性   总被引:3,自引:2,他引:3  
以中国科学院奈曼沙漠化研究站为依托,对不同放牧强度后自然恢复沙质草地土壤节肢动物群落进行了调查,分析了土壤节肢动物群落结构及其多样性变化,探讨了植被和土壤环境对土壤节肢动物群落的影响.结果表明: 无牧草地土壤动物种类丰富,个体数量较多,多样性最高;中牧后恢复草地土壤动物个体数量少,但主要类群较多,分布较均匀,多样性较高;重牧后恢复草地土壤动物主要类群少,但个体数量多,多样性较高;而轻牧后恢复草地土壤动物分布均匀性最差,多样性最低.植物个体数、高度及盖度和土壤酸碱度是影响不同放牧强度后恢复草地土壤动物种类和个体数量分布的主要因素.说明沙质草地经过12年的围封可以一定程度上恢复土壤动物群落,而放牧干扰对土壤动物群落的负面影响是长期的.  相似文献   

19.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

20.
河水漫溢对荒漠河岸林植物群落生态特征的影响   总被引:12,自引:1,他引:12  
徐海量  叶茂  李吉玫  王卫江 《生态学报》2007,27(12):4990-4998
从河水漫溢干扰对塔里木河下游植物群落物种多样性的影响以及对天然植被恢复作用上开展了分析和研究,结果表明:(1)输水前塔里木河下游仅见9科13属17种植物,但输水后漫溢区出现了12科26属34种植物,其中的18种植物是非漫溢区未曾发现的;(2)从样地植被调查计算的多样性指数看,漫溢区物种的多样性和丰富度比非漫溢区有明显增加;(3)从漫溢后一定时间内植物群落中不同物种的重要值看,漫溢后1年生草本植物迅速萌发,而多年生草本由于根系和繁殖上的优势逐渐在群落中占据优势;(4)由于胡杨、柽柳等植物在多次漫溢条件下易于萌发,因此多次漫溢后这些乔、灌木植物逐渐占据群落中的优势地位;(5)在漫溢过程中由于微地形改变了漫溢干扰的强度因此漫溢后微地形差异造成地表生态特征出现明显的差异;(6)通过讨论,漫溢干扰对塔里木河下游这样一个严重受损生态系统恢复的作用十分明显,但是这一作用的体现是与输水后下游生态水文过程完整性的恢复相联系的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号