首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An asymptotic analysis of a lubrication problem is presented for a model of articular cartilage and synovial fluid under the squeeze-film condition. This model is based upon the following constitutive assumptions: (1) articular cartilage is a linear porous-permeable biphasic material filled with a linearly viscous fluid (i.e. Newtonian fluid); (2) synovial fluid is also a linearly viscous fluid. The geometry of the problem is defined by assuming that (1) cartilage is a uniform layer of thickness H; (2) synovial fluid is a very thin layer compared to H; (3) the radius R of the load-supporting area (or the effective radius of curvature of joint surface, Ri) is large compared to H. Squeeze-film action is generated in the lubricant by a step loading function applied onto the two bearing surfaces. The model assumptions and the material properties yield two small parameters in the mathematical formulation. Based on these two small parameters, two coupled nonlinear partial differential equations were derived from an asymptotic analysis of the problem: one for the lubricant (analogous to the Reynolds equation) and one for the cartilage. For known properties of normal cartilage, our calculations show: (1) the cartilage layer deforms to enlarge the load-supporting area; (2) cartilage deformation acts to reduce the lateral fluid speed in the lubricant, thus prolonging the squeeze-film time which ranges from 1 to 10 s; (3) lubricant fluid in the gap is forced from the central high-pressure region into cartilage, and expelled from the tissue at the low-pressure periphery of the load-bearing region; and (4) tensile hoop stress exists at the cartilage surface despite the compressive squeeze-film loading condition. This hoop stress results directly from the radial flow of the interstitial fluid in the cartilage layer.  相似文献   

2.
This study focused on the role of insulin-like growth factor (IGF) binding proteins (IGFBPs) in cartilage on the transport and binding of IGF-I within the tissue. We have developed experimental and theoretical modeling techniques to quantify and contrast the roles of diffusion, binding, fluid convection, and electrical migration on the transport of IGF-I within cartilage tissue. Bovine articular cartilage disks were equilibrated in buffer containing 125I-IGF-I and graded levels of unlabeled IGF-I. Equilibrium binding, as measured by the uptake ratio of 125I-IGF-I in the tissue (free plus bound) to the concentration of labeled species in the buffer, was found to be consistent with a first-order reversible binding model involving one dominant family of binding sites within the matrix. Western ligand blots revealed a major IGF binding doublet around 23 kDa, which has been previously shown to coincide with IGFBP-6. Diffusive transport of 125I-IGF-I through cartilage was measured and found to be consistent with a diffusion-limited reaction theoretical model incorporating first-order reversible binding. Addition of excess amounts of unlabeled IGF-I during steady state transport of 125I-IGF-I resulted in release of bound 125I-IGF-I from the tissue, as predicted by the diffusion-reaction model. In contrast, addition of the low-affinity Des(1-3)IGF-I analog did not result in release of bound 125I-IGF-I. Application of electric current was used to augment transport of IGF-I through cartilage via electroosmosis and electrophoresis. Taken together, our results suggest that a single dominant substrate family, the high-affinity IGFBPs, is responsible for much of the observed binding of IGF-I within cartilage. The data suggest that intratissue fluid flow, such as that induced by mechanical loading of cartilage in vivo may be expected to enhance IGF transport by an order of magnitude and that this increment may help to counterbalance the restrictions encountered by the immobilization of IGFs by the binding proteins.  相似文献   

3.
We used fluorescence correlation spectroscopy to examine the binding of insulin, insulin-like growth factor 1 (IGF1) and anti-receptor antibodies to insulin receptors (IR) and IGF1 receptors (IGF1R) on individual 2H3 rat basophilic leukemia cells. Experiments revealed two distinct classes of insulin binding sites with K(D) of 0.11 nM and 75 nM, respectively. IGF1 competes with insulin for a portion of the low-affinity insulin binding sites with K(D) of 0.14 nM and for the high-affinity insulin binding sites with K(D) of 10 nM. Dissociation rate constants of insulin and IGF1 were determined to be 0.015 min(-1) and 0.013 min(-1), respectively, allowing estimation of ligand association rate constants. Combined, our results suggest that, in addition to IR and IGF1R homodimers, substantial numbers of hybrid IR-IGF1R heterodimers are present on the surface of these cells.  相似文献   

4.
The binding of insulin-like growth factor I (IGF I) on red blood cells has been studied in 13 children aged 8 months to 11 years and in 10 adults. The Scatchard analysis showed a curvilinear regression. In adults, the specific binding was 4.1% of the tracer, the mean number of high affinity receptor sites per cell (Ro1) being 0.88 (K1 = 10.74 nM-1) and the mean number of low affinity receptors sites (Ro2) per cell being 7.14 (K2 = 0.37 nM-1). In children the specific binding ranged from 3 to 6.5%. Ro1 ranged from 0.40 to 3.13 (K1 from 3.48 to 13.61 nM-1). Ro2 ranged from 2.88 to 17.25 (K2 from 0.03 to 0.65 nM-1). The most striking fact was the close positive correlation between the specific binding and the age of children (r = 0.914, P less than 0.001). These data suggest that the high growth velocity of young children, concomitant with the low plasma levels of IGF I which are physiological during infancy and early childhood, does not result from an increased binding of IGF I to cell receptors.  相似文献   

5.
The cell surface of human fibroblasts contains not only type I IGF receptors but at least two forms of IGFBPs. Studies were undertaken to analyze the mechanisms by which these IGFBPs alter IGF-I-cell surface interactions. Human fetal fibroblasts (GM10) and a human glioblastoma cell line (1690) were chosen for analysis. During assays to quantify [125I]-IGF-I binding, both cell lines were shown to release IGFBPs into the binding assay buffer. Under equilibrium conditions, [125I]-IGF-I preferentially associates with IGFBPs in the assay buffer (up to 40% of the [125I]-IGF-I added) since they have a higher affinity than type I IGF receptors or IGFBPs associated with the cell surface. Likewise the addition of increasing concentrations of unlabeled IGF-I results in preferential competition for binding to assay buffer IGFBPs. This results in a repartitioning of the [125I]-IGF-I that is bound to assay buffer IGFBPs onto cell surface binding sites. The degree of repartitioning is quantitatively related to the amount of [125I]-IGF-I bound to released IGFBPs. When cultures are exposed to cycloheximide before the binding assay, both the amount of IGFBPs that are released into the assay buffer and the amount of [125I]-IGF-I that is repartitioned are decreased. In contrast when [Gln3, Ala4, Tyr15, Leu16]-IGF-I ([QAYL]-IGF-I, an IGF analog that has unaltered affinity for type I IGF receptors) is iodinated and tested, the competition curve with unlabeled IGF-I shows no repartitioning effect. This form of IGF can be used to quantify type I receptor number independent of the presence of IGFBPs. IGF-I and the [QAYL]-IGF-I compete equally with the [125I]-[QAYL]-IGF-I for binding to cell surfaces, whereas unlabeled [QAYL]-IGF-I is greater than 25-fold less potent compared to IGF-I in competing with [125I]-IGF-I for cell surface binding. Specific binding of [125I]-[QAYL]-IGF-I to GM10 and 1690 cell surfaces is less than 20% of [125I]-IGF-I binding. These findings suggest that IGFBPs that are present on human fibroblast surfaces represent a large portion of the IGF binding sites. We conclude that the amount of IGFBPs released into assay buffer is a major determinant of the repartitioning of [125I]-IGF-I to cell surface binding sites and that both cell surface and assay buffer IGFBPs modulate type I IGF receptor binding.  相似文献   

6.
We examined the effects of IGF-I (1-1000 ng/ml) on cell proliferation in LM2d6 mouse fibroblast cells at 0.1, 1.0 and 5.0% fetal bovine serum (FBS). In medium containing 0.1% FBS, treatment of LM2d6 cells with IGF-I significantly reduced the cell number in a dose- and time-dependent manner, whereas no effects were seen at 1 or 5% FBS. Treatment of the cells with 0.1% FBS for 72 h caused DNA laddering and nuclear condensation. However, Scatchard analysis for IGF-I binding sites on the cells revealed that both the number and the affinity of IGF-I receptors were not greater than that of Balb/3T3 cells. Furthermore, the apoptotic action of Long (R(3))-IGF-I, an analogue of IGF-I that has a reduced affinity for IGF binding proteins, was not greater than that of IGF-I. Taken together, we conclude that IGF-I reduces cell proliferation at low levels of FBS due to the induction of apoptosis. This effect is probably not caused by an excess production of IGF binding proteins in LM2d6 cells.  相似文献   

7.
Opioid receptors can be localized to the hippocampal formation of the rat by autoradiography. The binding of 3H-enkephalinamide to fixed and mounted tissue sections has all the characteristics associated with binding to opioid receptors. It is saturable, of high affinity and displays stereospecificity. The opioid receptor distribution shows striking regional variation throughout the hippocampal formation. Areas with high density include the pyramidal cell layer of both regio superior (CA1) and regio inferior (CA3), stratum moleculare of the hippocampus, the cell layer of subiculum, the superficial part of presubiculum and the deep layer (VI) of the medial and lateral entorhinal cortices. Areas with low to medium densities include regions corresponding to the dendritic field of the pyramidal cells (str. oriens, str. radiatum and the mossy fiber zone), the dentate granule cell layer and the molecular layer of the dentate area. Enkephalin-like immunoreactivity is detected in both intrinsic neuronal systems: 1) the mossy fibers which terminate on the proximal part of the CA3 pyramidal cell dendrites and on CA4 pyramidal cells, 2) cell bodies with multiple short processes, probably interneurons, dispersed throughout the hilus of the dentate area, the pyramidal cell layer of hippocampus, the str. radiatum, and occasionally in the str. moleculare and in the str. oriens, and extrinsic neuronal systems: 1) the lateral perforant path and 2) the lateral temporo-ammonic tract. Thus, the hippocampus contains intrinsic systems of enkephalin-like immunoreactive nerve terminals which may exert their effect on the opioid receptors with a localization corresponding to the pyramidal cells and their apical dendrites. Extrinsic enkephalinergic systems corresponding to the terminal fields of the lateral perforant path and the temporoammonic tract, both of entorhinal origin, may influence the opioid receptors located in the molecular layer of the dentate area, and in the molecular layer of the hippocampus and the subiculum. Thus, the enkephalin-like immunoreactive nerve terminals are all located in areas which contain opioid binding sites. This suggests that the "opioid peptide-opioid receptor" systems may regulate hippocampal neuronal activity via neurotransmission or neuromodulation. However, a high or medium number of opioid binding sites occur over the pyramidal cell bodies and the dentate granule cell bodies, and these opioid binding sites are not in close contact with the major enkephalinergic systems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [125I]IGF I and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study we used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyse whether changes of insulin and IGF I binding are correlated with changes in growth rate and differentiation state of the cells. We show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IGF-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age.  相似文献   

9.
Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [125I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density.  相似文献   

10.
Visualization and characterization of interleukin 1 receptors in brain   总被引:14,自引:0,他引:14  
Interleukin 1 (IL 1) is a polypeptide hormone produced by macrophages, keratinocytes, and brain glial cells which acts as a soluble mediator in immunological and inflammatory reactions. Although its best known effect on the central nervous system is its ability to cause fever, it has been found to influence cell growth, food intake, and slow-wave sleep. We have developed a binding assay for 125I-labeled recombinant murine IL 1 and show it to be highly specific. Additionally, affinity cross-linking studies indicate that the rat brain IL 1 receptor has a m.w. of approximately 80,000, which is similar to the previously described recognition molecule on T cells and fibroblasts. Using autoradiographic techniques, we visualized the distribution of 125I-IL 1 binding in sections of fresh frozen rat brain. IL 1 receptors were found to be widespread throughout the brain, forming a distinctive pattern of distribution. Areas especially dense in receptors were typically neuron-rich sites of the brain such as granule cell layer of the dentate gyrus, the pyramidal cell layer of the hippocampus, and the granule cell layer of the cerebellum as well as in the hypothalamus. The pattern of IL 1 receptor distribution indicates the presence of receptors on neuron cell bodies and the localization to numerous discrete brain areas other than those hypothalamic sites involved in temperature regulation, suggesting a broader role for IL 1 in brain functioning than previously recognized. IL 1, derived from local or systemic sources, may function in the brain to coordinate behavioral and neuroendocrine activities with immunological and inflammatory reactions throughout the body.  相似文献   

11.
Hyperandrogenism observed in a variety of hyperinsulinemic states is thought to be due to an effect of insulin mediated through the type I insulin-like growth factor (IGF) receptors. These receptors, however, have not yet been demonstrated in normal human ovarian cells capable of androgen production. We now report the presence of type I IGF receptors in membrane preparations of human ovarian stroma. The ovarian stromal tissue was obtained from women undergoing indicated oophorectomy. Stromal plasma membranes were prepared. Specific 125I-IGF-I binding was 6.6 +/- 0.2%/100 micrograms protein. The affinity constant estimated by Scatchard analysis was 4.6 X 10(-9) M. 50% inhibition of 125I-IGF-1 binding was observed at 5 ng/ml of IGF-1. Specificity of the 125I-IGF-I-binding sites was confirmed by analogue specificity studies and in experiments utilizing monoclonal antibody to the IGF-I receptor, alpha-IR-3. IGF-II and insulin competed with 125I-IGF-I for the binding sites, but with an affinity significantly lower than that of IGF-I: 50% inhibition was observed at approximately 60 ng/ml of IGF-II or insulin. alpha-IR-3, a monoclonal antibody with high specificity for the type I IGF receptor, effectively inhibited 125I-IGF-I binding in a dose-dependent manner, confirming that the 125I-IGF-I binding was indeed to the type I IGF receptor. We conclude that type I IGF receptors are present in human ovarian stroma. These receptors may mediate effects of insulin on the ovary in hyperinsulinemic insulin-resistant states.  相似文献   

12.
Summary Opioid receptors can be localized to the hippocampal formation of the rat by autoradiography. The binding of 3H-enkephalinamide to fixed and mounted tissue sections has all the characteristics associated with binding to opioid receptors. It is saturable, of high affinity and displays stereospecificity. The opioid receptor distribution shows striking regional variation throughout the hippocampal formation. Areas with high density include the pyramidal cell layer of both regio superior (CA1) and regio inferior (CA3), stratum moleculare of the hippocampus, the cell layer of subiculum, the superficial part of presubiculum and the deep layer (VI) of the medial and lateral entorhinal cortices. Areas with low to medium densities include regions corresponding to the dendritic field of the pyramidal cells (str. oriens, str. radiatum and the mossy fiber zone), the dentate granule cell layer and the molecular layer of the dentate area. Enkephalin-like immunoreactivity is detected in both intrinsic neuronal systems: 1) the mossy fibers which terminate on the proximal part of the CA3 pyramidal cell dendrites and on CA4 pyramidal cells, 2) cell bodies with multiple short processes, probably interneurons, dispersed throughout the hilus of the dentate area, the pyramidal cell layer of hippocampus, the str. radiatum, and occasionally in the str. moleculare and in the str. oriens, and extrinsic neuronal systems: 1) the lateral perforant path and 2) the lateral temporo-ammonic tract. Thus, the hippocampus contains intrinsic systems of enkephalin-like immunoreactive nerve terminals which may exert their effect on the opioid receptors with a localization corresponding to the pyramidal cells and their apical dendrites. Extrinsic enkephalinergic systems corresponding to the terminal fields of the lateral perforant path and the temporoammonic tract, both of entorhinal origin, may influence the opioid receptors located in the molecular layer of the dentate area, and in the molecular layer of the hippocampus and the subiculum. Thus, the enkephalinlike immunoreactive nerve terminals are all located in areas which contain opioid binding sites. This suggests that the opioid peptide-opioid receptor systems may regulate hippocampal neuronal activity via neurotransmission or neuromodulation. However, a high or medium number of opioid binding sites occur over the pyramidal cell bodies and the dentate granule cell bodies, and these opioid binding sites are not in close contact with the major enkephalinergic systems. Such binding sites could represent newly synthesized opioid receptors ready for the enkephalinergic synapses of the cells and/or internalization of opioid receptors after stimulation at the synapses. Another possibility is the existence of cytoplasmic opioid binding sites (possibly t-RNA synthetase) with specific intracellular functions.  相似文献   

13.
Expression of the IGFBP-2 gene in post-implantation rat embryos.   总被引:1,自引:0,他引:1  
The insulin-like growth factors (IGFs) stimulate mitogenesis in a variety of cell types both in vitro and in vivo. These effects are mediated by both IGF receptors and a family of IGF binding proteins (IGFBPs), which are found complexed with the IGFs in serum and tissue fluids. Here we compare the sites of expression during early rat embryogenesis of the genes encoding the RGD-containing IGF binding protein IGFBP-2 and IGF-II. At all ages from early post-implantation through mid-gestation, the expression of IGFBP-2 was highly complementary to IGF-II. IGFBP-2 mRNA was detected throughout the epiblast of the egg cylinder as early as e7, when IGF-II expression was restricted to trophectoderm and other extraembryonic cells. As gastrulation proceeded, IGFBP-2 expression ceased as IGF-II expression began in the newly formed embryonic and extra-embryonic mesoderm, but was retained in other epiblast derivatives including the surface ectoderm and neuroectoderm, throughout its rostral-caudal extent. By e10-e11, IGFBP-2 expression in neuroectoderm was restricted to the rostral brain of the primary neural tube and was found in the new population of neuroepithelium formed in the tail bud during secondary neurulation. IGFBP-2 expression remained high in the ventricular layer of the rostral brain into mid-gestation ages but decreased or disappeared as cells entered the mantle layer and began to express the neurofilament-related gene alpha-internexin. IGFBP-2 mRNA was abundant in surface ectoderm, particularly that of the branchial arches, and all ectodermal placodes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Our basic-somatomedin (SM) was further compared with insulin-like growth factors (IGF) I and II. Basic-SM and IGF revealed similar sulfation factor (SF) activity in cartilage, insulin-like activity(ILA) in adipocytes, and receptor binding activity to adipocytes and placental cell membranes.IGF-II revealed less SF activity but more ILA than basic-SM. Comparison of SM and insulin in terms of ILA and binding activity to adipocytes suggested that adipocytes have separate insulin and SM receptors and that the ILA of SM is mediated through the SM receptors. These studies also suggest that the receptors for acidic-neutral group of SM mediate the ILA of SM, whereas the growth promoting effects of SM are mediated via receptors for the basic group of SM.  相似文献   

15.
A mixture model of synovial fluid filtration by cartilage in the human ankle joint during walking is presented for steady sliding motion of the articular surfaces. In the paper the cartilage surface zone is assumed worn out. The same model has been recently applied to the squeeze-film problem for the human hip joint loaded by the body weight during standing (Hlavácek, Journal of Biomechanics 26, 1145-1150, 1151-1160, 1993; Hlavácek and Novák, Journal of Biomechanics 28, 1193-1198, 1199-1205, 1995). The linear biphasic model for cartilage (elastic porous matrix + ideal fluid) due to Prof. V. C. Mow and his co-workers and the biphasic model for synovial fluid (viscous fluid + ideal fluid), as used in the above-mentioned squeeze-film problem, are applied. For the physiologic parameters of the ankle joint during walking, a continuous synovial fluid film about 1 microm thick is maintained under steady entraining motion according to the classical model without the fluid transport across the articular surface. This is not the case in the filtration model with the cartilage surface zones worn out. On the contrary, this filtration model indicates that synovial fluid is intensively filtrated by such cartilage, so that no continuous fluid film is maintained and a synovial gel layer, about 10(-8) m thick, develops over the majority of the contact. Thus, if the cartilage surface zones are worn out, boundary lubrication should prevail in the ankle joint under steady sliding motion for the mean values of loading and the sliding velocity encountered in walking cycle.  相似文献   

16.
Hyaluronic acid traditionally has been held to play a major role in the control of transsynovial exchanges and in the biomechanical properties of synovial fluid and cartilage surfaces. As with previous ultrastructural observations, immunohistochemical data show that a more complex differentiation must be envisaged for interstitial tissues bordering the synovial cavity. In particular, the elective concentration of fibronectin in the lining layer of the synovial membrane and its presence as a fine layer at the articular cartilage surfaces indicate that this glycoprotein, along with hyaluronic acid, may play an important role in joint physiology. Only immunoreactivity for type III procollagen is diffusely distributed in the entire synovial membrane and, in addition, is found associated with fibronectin immunoreactivity at the articular cartilage surfaces.  相似文献   

17.
The amount of mannose 6-phosphate/IGF II receptors in fibroblasts from five I-cell patients was about 2-fold higher than in control fibroblasts. The elevated receptor concentration, which led to a higher binding and uptake of mannose 6-phosphate containing ligands and to a higher binding of IGF II resulted from an increased rate of synthesis, while the stability of the receptor was comparable to that in control fibroblasts. Control fibroblasts respond to mannose 6-phosphate, IGF I, IGF II and tumor promoting phorbol esters with a rapid redistribution of mannose 6-phosphate/IGF II receptors from internal membranes to the cell surface. In I-cell fibroblasts only a moderate increase in cell surface receptors was seen after exposure to these effectors. In contrast to control fibroblasts the treatment of I-cell fibroblasts with lysosomotropic amines failed to affect the mannose 6-phosphate containing ligand binding to the receptor. These data provide evidence for multiple potential regulatory sites in intracellular mannose 6-phosphate/IGF II receptor pathway which differ in control and I-cell fibroblasts.  相似文献   

18.
We have used a murine proximal tubule cell line (MCT cells) to determine the presence and binding characteristics of insulin and IGF1 receptors and to correlate these parameters with the concentration-response relationships for ligand-induced cellular proliferation. Separate insulin and IGF1 receptors were identified by equilibrium binding assays. Half-maximal displacement of either peptide occurred at 3-10 nM; crossover binding to the alternate receptor occurred with a 10- to 100-fold lower affinity. Peptide effects on cellular proliferation were determined by measuring [3H]thymidine incorporation. Both insulin and IGF1 stimulate thymidine incorporation in a dose-dependent manner with similar increases above the basal level. The estimated half-maximal stimulation (EC50) occurred at 4 nM for IGF1 and 8 nM for insulin. A comparison of the receptor binding affinities with the dose-response relationships for [3H]thymidine incorporation reveals that each growth factor appears to be exerting its effect via binding to its own receptor. Therefore, in this cell line, physiologic concentrations of either insulin or IGF1 can modulate cellular growth. To our knowledge this is the first demonstration of a mitogenic effect which may be modulated by ligand binding to the insulin receptor in proximal tubule epithelia.  相似文献   

19.
Interactions of cells with extracellular matrix (ECM) are mediated through specific cell surface receptors, belonging to the integrin family of transmembrane proteins. Integrins have been shown to be involved in chondrocyte-matrix interactions in the cartilage. In this study, the status of a matrix glycoprotein fibronectin (FN) and its receptor alpha5beta1 integrin in the articular cartilage in collagen type II-induced experimental arthritis in rats, as well as in synovial fluid from osteoarthritic patients was investigated. Experimental arthritis was induced by intradermal injection of type-II collagen (300 microg/100 g body wt) and Freund's complete adjuvant. Saline-treated animals served as control. Clinical severity was indicated by increase in paw volume. Significant increase in the activities of lysosomal enzymes beta-glucuronidase and beta-hexosaminidase was observed in synovial effusate, serum and cartilage of arthritic animals, when compared to untreated control, indicating dysfunction of cartilage. Changes in FN and alpha5beta1 integrin were studied by ELISA. A progressive increase was observed in the FN level in synovial effusate and cartilage of arthritic animals, when compared to untreated controls. FN levels were also significantly high in synovial fluid of osteoarthritic patients. A significant increase in the levels of alpha5beta1 integrin was found in cartilage of arthritic rats. Parallel changes in FN and alpha5beta1 integrin indicated that alterations in FN and alpha5beta1 integrin in chondrocytes constituted one of the molecular mechanisms during progression of arthritis.  相似文献   

20.
Abstract: We examined endothelin (ET) receptors in the hippocampus CA1 subfields of stroke-prone spontaneously hypertensive rats subjected to a 10-min bilateral carotid occlusion and reperfusion. When delayed neuronal death had occurred in the pyramidal cell layer at 7 days after transient forebrain ischemia, the quantitative receptor autoradiographic method we used revealed a dramatic increase in number of 125I-ET-1 binding sites in the hippocampus CA1 subfields. The highest number of de novo binding sites appeared in the area corresponding anatomically to the pyramidal cell layer with neuronal death. These binding sites were characteristically the ETB receptor. The de novo 125I-ET-1 binding was mainly present on microglia aggregating with a high density in the damaged pyramidal cell layer. As ET-1- and ET-3-like immunoreactivities were highly expressed within astrocytes in damaged neural tissue, the possibility that microglia with the ETB receptor are activated to participate in the pathophysiology of ischemia-related neural tissue damage by astrocytic ET-1 and ET-3 produced in response to transient forebrain ischemia would have to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号