首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.  相似文献   

2.
The VS ribozyme trans-cleavage substrate interacts with the catalytic RNA via tertiary interactions. To study the role of phosphate groups in the ribozyme–substrate interaction, 18 modified substrates were synthesized, where an epimeric phosphorothioate replaces one of the phosphate diester linkages. Sites in the stem–loop substrate where phosphorothioate substitution impaired reaction cluster in two regions. The first site is the scissile phosphate diester linkage and nucleotides downstream of this and the second site is within the loop region. The addition of manganese ions caused recovery of the rate of reaction for phosphorothioate substitutions between A621 and A622 and U631 and C632, suggesting that these two phosphate groups may serve as ligands for two metal ions. In contrast, significant manganese rescue was not observed for the scissile phosphate diester linkage implying that electrophilic catalysis by metal ions is unlikely to contribute to VS ribozyme catalysis. In addition, an increase in the reaction rate of the unmodified VS ribozyme was observed when a mixture of magnesium and manganese ions acted as the cofactor. One possible explanation for this effect is that the cleavage reaction of the VS ribozyme is rate limited by a metal dependent docking of the substrate on the ribozyme.  相似文献   

3.
The complete VS ribozyme comprises seven helical segments, connected by three three-way RNA junctions. In the presence of Mg2+ ions, cleavage occurs within the internal loop of helix I. This requires the participation of a guanine (G638) within the helix I loop, and a remote adenine (A756) within an internal loop of helix VI. Previous structural studies have suggested that helix I docks into the fold of the remaining part of the ribozyme, bringing A756 and G638 close to the scissile phosphate to allow the cleavage reaction to proceed. We show here that while either A756C or G638A individually exhibit very low cleavage activity, a mixture of the two variants leads to cleavage of the A756C RNA, but not the G638A RNA. The rate of cleavage depends on the concentration of the VS G638A RNA, as expected for a bimolecular interaction. This regaining of cleavage activity by complementation indicates that helix I of one VS RNA can interact with another VS RNA molecule to generate a functional active site in trans.  相似文献   

4.
Many RNAs contain tertiary interactions that contribute to folding the RNA into its functional 3D structure. In the VS ribozyme, a tertiary loop-loop kissing interaction involving stem-loops I and V is also required to rearrange the secondary structure of stem-loop I such that nucleotides at the base of stem I, which contains the cleavage-ligation site, can adopt the conformation required for activity. In the current work, we have used mutants that constitutively adopt the catalytically permissive conformation to search for additional roles of the kissing interaction in vitro. Using mutations that disrupt or restore the kissing interaction, we find that the kissing interaction contributes ~1000-fold enhancement to the rates of cleavage and ligation. Large Mg(2+)-dependent effects on equilibrium were also observed: in the presence of the kissing interaction cleavage is favored >10-fold at micromolar concentrations of Mg(2+); whereas ligation is favored >10-fold at millimolar concentrations of Mg(2+). In the absence of the kissing interaction cleavage exceeds ligation at all concentrations of Mg(2+). These data provide evidence that the kissing interaction strongly affects the observed cleavage and ligation rate constants and the cleavage-ligation equilibrium of the ribozyme.  相似文献   

5.
The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.  相似文献   

6.
7.
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson-Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.  相似文献   

8.
The cleavage site of the Neurospora VS RNA ribozyme is located in a separate hairpin domain containing a hexanucleotide internal loop with an A-C mismatch and two adjacent G-A mismatches. The solution structure of the internal loop and helix la of the ribozyme substrate hairpin has been determined by nuclear magnetic resonance (NMR) spectroscopy. The 2 nt in the internal loop, flanking the cleavage site, a guanine and adenine, are involved in two sheared G.A base pairs similar to the magnesium ion-binding site of the hammerhead ribozyme. Adjacent to the tandem G.A base pairs, the adenine and cytidine, which are important for cleavage, form a noncanonical wobble A+-C base pair. The dynamic properties of the internal loop and details of the high-resolution structure support the view that the hairpin structure represents a ground state, which has to undergo a conformational change prior to cleavage. Results of chemical modification and mutagenesis data of the Neurospora VS RNA ribozyme can be explained in context with the present three-dimensional structure.  相似文献   

9.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

10.
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.  相似文献   

11.
The Neurospora VS ribozyme recognizes and cleaves a substrate RNA that contains a GC-rich stem loop. In contrast to most RNA secondary structures that are stable during tertiary or quaternary folding, this substrate undergoes extensive ribozyme-induced rearrangement in the presence of magnesium in which the base pairings of at least seven of the ten nucleotides in the stem are changed. This conformational switch is essential for catalytic activity with the wild-type substrate and creates a metal-binding secondary structure motif near the cleavage site. Base pair rearrangement is accompanied by bulging a cytosine from the middle of the stem, indicating that ribozymes may perform base flipping, an activity previously observed only with protein enzymes that modify DNA.  相似文献   

12.
Hiley SL  Collins RA 《The EMBO journal》2001,20(19):5461-5469
We have used hydroxyl radicals generated by decomposition of peroxynitrous acid to study Mg(2+)-dependent structure and folding of the Varkud satellite (VS) ribozyme. Protection from radical cleavage shows the existence of a solvent-inaccessible core, which includes nucleotides near two three-helix junctions, the kissing interaction between stem-loops I and V and other nucleotides, most of which have also been implicated as important for folding or activity. Kinetic folding experiments showed that the ribozyme folds very quickly, with the observed protections completely formed within 2 s of addition of MgCl(2). In mutants that disrupt the kissing interaction or entirely remove stem-loop I, which contains the cleavage site, nucleotides in the three-helix junctions and a subset of those elsewhere remain protected. Unlike smaller ribozymes, the VS ribozyme retains a significant amount of structure in the absence of its substrate. Protections that depend on proper interaction between the substrate and the rest ribozyme map to a region previously proposed as the active site of the ribozyme and along both sides of helix II, identifying candidate sites of docking for the substrate helix.  相似文献   

13.
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.  相似文献   

14.
We have used nucleotide analog interference mapping and site-specific substitution to determine the effect of 2′-deoxynucleotide substitution of each nucleotide in the VS ribozyme on the self-cleavage reaction. A large number of 2′-hydroxyls (2′-OHs) that contribute to cleavage activity of the VS ribozyme were found distributed throughout the core of the ribozyme. The locations of these 2′-OHs in the context of a recently developed helical orientation model of the VS ribozyme suggest roles in multi-stem junction structure, helix packing, internal loop structure and catalysis. The functional importance of three separate 2′-OHs supports the proposal that three uridine turns contribute to local and long-range tertiary structure formation. A cluster of important 2′-OHs near the loop that is the candidate region for the active site and one very important 2′-OH in the loop that contains the cleavage site confirm the functional importance of these two loops. A cluster of important 2′-OHs lining the minor groove of stem–loop I and helix II suggests that these regions of the backbone may play an important role in positioning helices in the active structure of the ribozyme.  相似文献   

15.
Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700 in SLI recognition. Here, we kinetically characterized VS ribozyme mutants to evaluate the contribution of U700 and other SLV loop residues to SLI recognition. To help interpret the kinetic data, we structurally characterized the SLV mutants by NMR spectroscopy and generated a three-dimensional model of the SLI/SLV complex by homology modeling with MC-Sym. We demonstrated that the mutation of U700 by A, C, or G does not significantly affect ribozyme activity, whereas deletion of U700 dramatically impairs this activity. The U700 backbone is likely important for SLI recognition, but does not appear to be required for either the structural integrity of the SLV loop or for direct interactions with SLI. Thus, deletion of U700 may affect other aspects of SLI recognition, such as magnesium ion binding and SLV loop dynamics. As part of our NMR studies, we developed a convenient assay based on detection of unusual (31)P and (15)N N7 chemical shifts to probe the formation of U-turn structures in RNAs. Our model of the SLI/SLV complex, which is compatible with biochemical data, leads us to propose novel interactions at the loop I/loop V interface.  相似文献   

16.
The VS ribozyme is a 154 nucleotide sequence found in certain natural strains of Neurospora. The RNA can be divided into a substrate and a catalytic domain. Here we present the solution structure of the substrate RNA that is cleaved in a trans reaction by the catalytic domain in the presence of Mg2+. The 30 nucleotide substrate RNA forms a compact helix capped by a flexible loop. The cleavage site bulge contains three non-canonical base-pairs, including an A+.C pair with a protonated adenine. This adenine (A622) is a pH controlled conformational switch that opens up the internal loop at higher pH. The possible significance of this switch for substrate recognition and cleavage is discussed.  相似文献   

17.
The VS nucleolytic ribozyme has a core comprising five helices organized by two three-way junctions. The ribozyme can act in trans on a hairpin-loop substrate, with which it interacts via tertiary contacts. We have determined that one of the junctions (2-3-6) undergoes two-stage ion-dependent folding into a stable conformation, and have determined the global structure of the folded junction using long-range distance restraints derived from fluorescence resonance energy transfer. A number of sequence variants in the junction are severely impaired in ribozyme cleavage, and there is good correlation between changes in activity and alteration in the folding of junction 2-3-6. These studies point to a special importance of G and A nucleotides immediately adjacent to helix II, and comparison with a similar junction of known structure indicates that this could adopt a guanine-wedge structure. We propose that the 2-3-6 junction organizes important aspects of the structure of the ribozyme to facilitate productive association with the substrate, and suggest that this results in an interaction between the substrate and the A730 loop to create the active complex.  相似文献   

18.
Stable RNAs must fold into specific three-dimensional structures to be biologically active, yet many RNAs form metastable structures that compete with the native state. Our previous time-resolved footprinting experiments showed that Azoarcus group I ribozyme forms its tertiary structure rapidly (τ < 30 ms) without becoming significantly trapped in kinetic intermediates. Here, we use stopped-flow fluorescence spectroscopy to probe the global folding kinetics of a ribozyme containing 2-aminopurine in the loop of P9. The modified ribozyme was catalytically active and exhibited two equilibrium folding transitions centered at 0.3 and 1.6 mM Mg2+, consistent with previous results. Stopped-flow fluorescence revealed four kinetic folding transitions with observed rate constants of 100, 34, 1, and 0.1 s− 1 at 37 °C. From comparison with time-resolved Fe(II)-ethylenediaminetetraacetic acid footprinting of the modified ribozyme under the same conditions, these folding transitions were assigned to formation of the IC intermediate, tertiary folding and docking of the nicked P9 tetraloop, reorganization of the P3 pseudoknot, and refolding of nonnative conformers, respectively. The footprinting results show that 50-60% of the modified ribozyme folds in less than 30 ms, while the rest of the RNA population undergoes slow structural rearrangements that control the global folding rate. The results show how small perturbations to the structure of the RNA, such as a nick in P9, populate kinetic folding intermediates that are not observed in the natural ribozyme.  相似文献   

19.
Loop–loop tertiary interactions play a key role in the folding and catalytic activity of natural hammerhead ribozymes. Using a combination of NMR spectroscopy, site-directed mutagenesis and kinetic and infectivity analyses, we have examined the structure and function of loops 1 and 2 of the (+) and (–) hammerheads of chrysanthemum chlorotic mottle viroid RNA. In both hammerheads, loop 1 is a heptanucleotide hairpin loop containing an exposed U at its 5′ side and an extrahelical U at its 3′-side critical for the catalytic activity of the ribozyme in vitro and for viroid infectivity in vivo, whereas loop 2 has a key opened A at its 3′-side. These structural features promote a specific loop–loop interaction motif across the major groove. The essential features of this tertiary structure element, base pairing between the 5′ U of loop 1 and the 3′ A of loop 2, and interaction of the extrahelical pyrimidine of loop 1 with loop 2, are likely shared by a significant fraction of natural hammerheads.  相似文献   

20.
The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme—the protonated C41 base triple—and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号