首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was being maintained.  相似文献   

2.
Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.  相似文献   

3.
Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentration of 20+/-0.8 g/L. Growth rates obtained in pure xylose-based medium were less than those for media containing pure glucose and glucose-xylose mixtures. A maximum specific growth rate micro(max) of 0.291 h(-1) was obtained in YPD medium containing 20 g/L glucose as compared to 0.206 h(-1) in YPX medium containing 20 g/L xylose. In media containing combinations of glucose and xylose, glucose was exhausted first followed by xylose. Ethanol production on pure xylose entered log phase during the 12-24h period as compared to the 4-10h for pure glucose based medium using 2% inoculum. When glucose was added to fermentation flasks which had been initiated on a pure xylose-based medium, the rate of xylose usage was reduced indicating cosubstrate inhibition of xylose consumption by glucose.  相似文献   

4.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

5.
Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
ABSTRACT: BACKGROUND: Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15 % (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. RESULTS: Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 [PLUS-MINUS SIGN] 3.1, 252 [PLUS-MINUS SIGN] 2.9 and 298 [PLUS-MINUS SIGN] 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at [MINUS SIGN]100 mV, ethanol fermentation with the high gravity (HG) media containing glucose of 201 [PLUS-MINUS SIGN] 3.1 and 252 [PLUS-MINUS SIGN] 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 [PLUS-MINUS SIGN] 1.3 and 120.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 [PLUS-MINUS SIGN] 0.4 and 17.0 [PLUS-MINUS SIGN] 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol was produced at 72 h when ORP was controlled at [MINUS SIGN]150 mV for the VHG fermentation with medium containing 298 [PLUS-MINUS SIGN] 3.8 g/L glucose, since yeast cell viability was improved more significantly. CONCLUSIONS: No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at [MINUS SIGN]150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG ethanol fermentation performance. On the other hand, controlling ORP at [MINUS SIGN]100 mV stimulated yeast growth and enhanced ethanol production under the HG conditions. Moreover, the ORP profile detected during ethanol fermentation with the flocculating yeast was less fluctuated, indicating that yeast flocculation could attenuate the ORP fluctuation observed during ethanol fermentation with non-flocculating yeast.  相似文献   

7.
Sun ZY  Tang YQ  Iwanaga T  Sho T  Kida K 《Bioresource technology》2011,102(23):10929-10935
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.  相似文献   

8.
Lactic acid production by recycle batch fermentation using immobilized cells of Lactobacillus casei subsp. rhamnosus was studied. The culture medium was composed of whey treated with an endoprotease, and supplemented with 2.5 g/L of yeast extract and 0.18 mM Mn(2+) ions. The fermentation set-up comprised of a column packed with polyethyleneimine-coated foam glass particles, Pora-bact A, and connected with recirculation to a stirred tank reactor vessel for pH control. The immobilization of L. casei was performed simply by circulating the culture medium inoculated with the organism over the beads. At this stage, a long lag period preceded the cell growth and lactic acid production. Subsequently, for recycle batch fermentations using the immobilized cells, the reducing sugar concentration of the medium was increased to 100 g/L by addition of glucose. The lactic acid production started immediately after onset of fermentation and the average reactor productivity during repeated cycles was about 4.3 to 4.6 g/L . h, with complete substrate utilization and more than 90% product yield. Sugar consumption and lactate yield were maintained at the same level with increase in medium volume up to at least 10 times that of the immobilized biocatalyst. The liberation of significant amounts of cells into the medium limited the number of fermentation cycles possible in a recycle batch mode. Use of lower yeast extract concentration reduced the amount of suspended biomass without significant change in productivity, thereby also increasing the number of fermentation cycles, and even maintained the D-lactate amount at low levels. The product was recovered from the clarified and decolorized broth by ion-exchange adsorption. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:841-853, 1997.  相似文献   

9.
Summary Growth and ethanol production by three strains (MSN77, thermotolerant, SBE15, osmotolerant and wild type ZM4) of the bacterium Zymomonas mobilis were tested in a rich medium containing the hexose fraction from a cellulose hydrolysate (Aspen wood). The variations of yield and kinetic parameters with fermentation time revealed an inhibition of growth by the ethanol produced. This inhibition may result from the increase in medium osmolality due to ethanol formation from glucose.Nomenclature S glucose concentration (g/L) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - Qp volumetric ethanol productivity (g/L.h) - QX volumetric biomass productivity (g/L.h) - YX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

10.
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.  相似文献   

11.
Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.  相似文献   

12.
Summary Aqueous feeds of 413 and 495 g/L glucose were fermented to ethanol at 90–95% conversion in a continuous flow extractive fermentation system with cell recycle. Compared to the continuous conventional fermentation of a 195 g/L glucose medium, the volumetric productivity was more than doubled in extractive mode, with no deleterious effects on cell viability, specific glucose consumption rate or ethanol yield. The use of an effective, biocompatible and stable in situ extractant with flash vaporization can also produce a concentrated ethanol vapour stream, reducing distillation costs of the product.  相似文献   

13.
Summary Extractive fermentation is shown to greatly improve the performance ofZymomonas mobilis in continuous culture during the conversion of concentrated substrates to ethanol, and it is also used to eliminate the oscillatory behavior often exhibited byZ. mobilis in conventional fermentations. An ethanol productivity of 15.6 g/Lh is achieved with the near-conversion of a 295 g/L glucose feed at a medium dilution rate of 0.11 h–1 and solvent dilution rate of 1.5 h–1. This is more than triple the productivity obtained during conventional fermentation of a 135 g/L glucose feed at the same medium dilution rate.  相似文献   

14.
Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field.  相似文献   

15.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

16.
The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS.  相似文献   

17.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

18.
Summary A fibrous support was used forZ. mobilis immobilization. The system showed a broad optimum temperature range (25–35°C) for highest ethanol productivity, ethanol yield and glucose conversion during continuous fermentation of a 100 g/L glucose medium. Ethanol production and glucose conversion kept steady during two months of continuous operation at D=1h–1.  相似文献   

19.
Powdered activated carbon-treated lignocellulosic syrup prepared from energy cane bagasse was evaluated as a potential feedstock in the production of fumaric acid by Rhizopus oryzae ATCC® 20344?. Energy cane bagasse was pretreated with dilute ammonia and enzymatically hydrolyzed with commercially available enzymes, Cellic® CTec2 and HTec2. The collected hydrolysate samples were subjected to powdered activated carbon adsorption for the removal of non-sugar compounds (i.e., organic acids, furaldehydes, total phenolic compounds) and concentrated to a final 65°Bx syrup (mostly xylose and glucose sugars). The use of lignocellulosic syrup, the effect of nitrogen source, medium additives, and initial pH in the seed culture medium on fungal morphology were investigated. The carbon to nitrogen (C/N) ratio in the acid production medium was also optimized for maximum yields in fumaric acid production. Optimum seed culture medium conditions (2.0 g/L urea, 3.0 pH) produced the desired compact, smooth, and uniform fungal pellets. Optimum acid production medium conditions (400 C/N ratio, 0.2 g/L urea) resulted in a fumaric acid production of 34.20 g/L, with a yield of 0.43 g/g and a productivity of 0.24 g/L/h. These results were comparable to those observed with the control medium (pure glucose and xylose). The present study demonstrated that lignocellulosic syrup processed from dilute ammonia pretreated energy cane bagasse has potential as a renewable carbon source for fumaric acid fermentation by Rhizopus oryzae ATCC® 20344?.  相似文献   

20.
Using a generalSaccharomyces cerevisiae as a model strain, continuous ethanol fermentation was carried out in a stirred tank bioreactor with a working volume of 1,500 mL. Three different gravity media containing glucose of 120, 200 and 280 g/L, respectively, supplemented with 5 g/L yeast extract and 3 g/L peptone, were fed into the fermentor at different dilution rates. Although complete steady states developed for low gravity medium containing 120 g/L glucose, quasi-steady states and oscillations of the fermented parameters, including residual glucose, ethanol and biomass were observed when high gravity medium containing 200 g/L glucose and very high gravity medium containing 280 g/L glucose were fed at the designated dilution rate of 0.027 h−1. The observed quasi-steady states that incorporated these steady states, quasi-steady states and oscillations were proposed as these oscillations were of relatively short periods of time and their averages fluctuated up and down almost symmetrically. The continuous kinetic models that combined both the substrate and product inhibitions were developed and correlated for these observed quasi-steady states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号