首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Seed dispersal by small primates may be particularly relevant in areas where populations of larger frugivores have been reduced or extinguished by hunting and/or habitat disturbance. In this context, the aim of this study was to evaluate the role of the golden-headed lion tamarin Leontopithecus chrysomelas as a seed disperser in Atlantic forest remnants in Brazil. To this end, we opportunistically collected feces deposited during observations on the feeding behavior of two groups of golden-headed lion tamarins ranging in the degraded areas of the Una Biological Reserve, Bahia, Brazil, from February 2006 to January 2007. We collected 587 fecal samples, of which 524 contained seeds from 24 plant species, distributed over 13 families. Disregarding seeds of<3 mm, the majority of seeds recovered were bromeliad seeds. In general, ingestion of seeds by golden-headed lion tamarins did not improve the germination proportion or decrease the germination delay of seeds, with the exception of Aechmea spp. seeds. The tamarins encountered different habitats during their daily activity period, while feeding and defecating. Consequently, some seeds were transported to different habitats including disturbed areas. Thus, the role of seed dispersal in combination with the daily movement pattern of L. chrysomelas contributes to the persistence of fruit plants and epiphyte species and to the natural regeneration process within Atlantic forest remnants.  相似文献   

2.
For a plant with bird-dispersed seeds, the effectiveness of seed dispersal can change with fruit availability at scales ranging from individual plants to neighborhoods, and the scale at which frugivory patterns emerge may be specific for frugivorous species differing in their life-history and behavior. The authors explore the influence of multispecies fruit availability at two local spatial scales on fruit consumption of Eugenia uniflora trees for two functional groups of birds. The authors related visitation and fruit removal by fruit gulpers and pulp mashers to crop size and conspecific and heterospecific fruit abundance to assess the potential roles that facilitative or competitive interactions play on seed dispersal. The same fruiting scenario influenced fruit gulpers (legitimate seed dispersers) and pulp mashers (inefficient dispersers) in different ways. Visits and fruit removal by legitimate seed dispersers were positively related to crop size and slightly related to conspecific, but not to heterospecific fruit neighborhoods. Visits and fruit consumption by pulp mashers was not related to crop size and decreased with heterospecific fruit availability in neighborhoods; however, this might not result in competition for dispersers. The weak evidence for facilitative or competitive processes suggest that interaction of E. uniflora with seed dispersers may depend primarily on crop size or other plant’s attributes susceptible to selection. The results give limited support to the hypothesis that spatial patterns of fruit availability influence fruit consumption by birds, and highlight the importance of considering separately legitimate and inefficient dispersers to explain the mechanisms that lie behind spatial patterns of seed dispersal.  相似文献   

3.
We examined the presence of birds accompanying and foraging in proximity to golden-headed lion tamarins at Una Biological Reserve, Bahia, Brazil. We followed 3 groups of golden-headed lion tamarins over 3 yr. We noted all birds ≤5 m of a lion tamarin during 20-min observation periods. We found 11 different bird species in the presence of the lion tamarins. We most often found insectivores, such as woodcreepers and nunbirds, in association with them, eating prey the tamarins flushed. Associations were most frequent in mature and shade-cocoa forests. The group that spent most of its time in mature and shade-cocoa forest was also the group that foraging birds followed most frequently. Differences in resource availability among forest types, such as the abundance of microforaging environments, may affect the frequency and diversity of birds seen in association with golden-headed lion tamarins.  相似文献   

4.
The effect of conspecific attraction on metapopulation dynamics   总被引:4,自引:0,他引:4  
Random dispersal direction is assumed in all current metapopulation models. This assumption is called into question by recent experiments demonstrating that some species disperse preferentially to sites occupied by conspecifies. We incorporate conspecific attraction into two metapopulation models which differ in type of dispersal, the Levins model and a two-dimensional stepping-stone model. In both models, conspecific attraction lowers the proportion of occupied habitat patches within a metapopulation at equilibrium.  相似文献   

5.
Habitat loss and fragmentation are the leading causes of biodiversity decline world-wide. Animals sensitive to fragmentation experience reduced dispersal, breeding opportunities, and genetic diversity, making them vulnerable to local extinction. Over the last few decades the Atlantic Forest of Brazil has been extremely fragmented, with only 11–16% of forest remaining. The Brazilian government and nongovernmental organizations have taken actions through legislation and conservation initiatives to restore forest. Using computer modeling, we compared how alternative forest restoration strategies could improve functional connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in Southern Bahia, Brazil. Strategies differed by restoration configuration, including Within- and Across-Property approaches, and restoration amount (0–20% restoration). Increasing restoration amounts resulted in greater species functional connectivity, and Within-Property and Across-Property strategies both had significantly more connectivity than the Random strategy. We suggest restoration management consider the size and placement of restored forest, and that riparian forest be restored first to create dispersal corridors and reestablish essential ecosystem services. We further suggest the importance of forming canopy bridges across narrow sections of rivers during the early stages of the restoration process to promote increased connectivity of these newly restored areas. Our findings can aid managers and landowners in understanding the implications of different restoration strategies for highly arboreal, matrix-sensitive species.  相似文献   

6.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

7.
Conservation of forest birds in fragmented landscapes requires not only determining the critical patch characteristics influencing local population persistence but also identifying patch networks providing connectivity and suitable habitat conditions necessary to ensure regional persistence. In this study, we assessed the importance of patch attributes, patch connectivity, and network components (i.e., groups of interconnected patches) in explaining the occupancy pattern of the Thorn-tailed Rayadito (Aphrastura spinicauda), a forest bird species of central Chile. Using a daily movement threshold distance, we identified a total of 16 network components of sclerophyllous forest within the study area. Among those components, patch area and vegetation structure-composition were important predictors of patch occupancy. However, the inclusion of patch connectivity and component size (i.e., the area of a network component) into the models greatly increases the models’ accuracy and parsimony. Using the best-fitted model, a total of 33 patches were predicted to be occupied by rayaditos within the study area, but such occupied patches were distributed in only six network components. These results suggest that persistence of rayaditos in central Chile requires the maintenance of large single patches and patch networks providing habitat and connectivity.  相似文献   

8.
Lack of landscape connectivity and habitat loss is major threats to biodiversity and ecosystem integrity in nature reserves aimed at conservation. In this study, we used structural pattern and functional connectivity metrics to analyze the spatial patterns and landscape connectivity of habitat patches for the Shangyong sub-reserve of the Xishuangbanna Nature Reserve from 1970, 1990, and 2000. On the basis of vegetation and land cover data, we applied the equivalent connected area ECA(PC) indicator to analyze the changes in forest connectivity. Four distance thresholds (2, 4, 8, 12 km) were considered to compare the patch importance of connectivity by dECA values. The results showed the declining trends of landscape connectivity measured by ECA(PC) index from 1970 to 2000. The importance of connectivity in each forest patch varied with the increment of dispersal distances at the patch level, and some important habitat patches, which exhibit a potential to enhance landscape connectivity, should be given more attention. The least-cost pathways based on network structure were displayed under four dispersal distances in three periods. The results showed that the number of paths among the fragments of forest patches exhibited radical increases for larger dispersal distances. Further correlation analyses of AWF, ECA (IIC), and ECA (PC) showed the weakest and least-frequent correlations with the structural pattern indices, while H presented more significant correlations with the PD fragmentation metric. Furthermore, Kendall's rank correlations between the forest patch area and functional connectivity indicators showed that dECA (PC) and dAWF indicators should provided the area-based prioritization of habitat patches. Moreover, the low-rank correlations showed that dF and dLCP can be considered as effective and appropriate indicators for the evaluation of habitat features and network patterns.  相似文献   

9.
Connectivity losses lead to a reduction of the amount of habitat resources that can be reached and used by species, and hence to a decline in the ranges and abundance of multiple taxa. Despite the recognized important role of small habitat patches for many species inhabiting fragmented landscapes, their potential contribution as stepping stones for maintaining overall landscape connectivity has received less attention. Using connectivity metrics based on a graph-theoretic approach we (i) quantified the connectivity of grassland patches in a sector of the Pampa region in Argentina, using a range of dispersal distances (from 100 to 10,000 m) representative of the scale of dispersal of different species; (ii) identified the most relevant patches for maintaining overall connectivity; and (iii) studied the importance of small patches (defined for different area thresholds of 5, 20, and 50 ha) as connectivity providers in the landscape. Although grassland patches were in general poorly connected at all distances, some of them were critical for overall connectivity and were found to play different crucial roles in the patch network. The location of small patches in the grassland network allowed them to function as stepping stones, yielding significant connectivity gains for species that move large distances (>5000 m) for the three area thresholds considered. Thus, under the spatial pattern of the studied landscape, species that move long distances would benefit from stepping stones, while less mobile organisms would benefit from, and mostly rely on the largest patches. We recommend that future management activities should (i) aim at preserving the grassland patches with the highest potential as stepping stones to promote landscape-level connectivity; and (ii) pay more attention to the conservation of key small patches, particularly given that usually they are those more vulnerable to land clearing for agriculture.  相似文献   

10.
Natal dispersal has profound consequences for populations through the movement of individuals and genes. Habitat fragmentation reduces structural connectivity by decreasing patch size and increasing isolation, but understanding of how this impacts dispersal and the functional connectivity of landscapes is limited because many studies are constrained by the size of the study areas or sample sizes to accurately capture natal dispersal. We quantified natal dispersal probability and natal dispersal distances in a small migratory shorebird, the Southern Dunlin Calidris alpina schinzii, with data from two extensively monitored endangered metapopulations breeding in Sweden and Finland. In both metapopulations philopatry was strong, with individuals returning to or close to their natal patches more often than expected by chance, consistent with the patchy distribution of their breeding habitat. Dispersal probabilities were lower and dispersal distances were shorter in Sweden. These results provide a plausible explanation for the observed inbreeding and population decline of the Swedish population. The differences between Sweden and Finland were explained by patch‐specific differences. Between‐patch dispersal decreased with increasing natal patch size and distance to other patches. Our results suggest that reduced connectivity reduces movements of the philopatric Dunlin, making it vulnerable to the effects of inbreeding. Increasing connectivity between patches should thus be one of the main goals when planning future management. This may be facilitated by creating a network of suitably sized patches (20–100 ha), no more than 20 km apart from each other, from existing active patches that may work as stepping stones for movement, and by increasing nest success and pre‐fledging survival in small patches.  相似文献   

11.
Animal movements at large spatial scales are of great importance in population ecology, yet little is known due to practical problems following individuals across landscapes. We studied the whole Norwegian population of a small songbird (ortolan bunting, Emberiza hortulana ) occupying habitat patches dispersed over nearly 500 km2. Movements of colour-ringed males were monitored during ten years, and extensive long-distance dispersal was recorded. More than half of all cases of breeding dispersal took place within one breeding season, and males moved up to 43 km between singing territories, using 1–22 d. Natal dispersal was usually to a habitat patch close to the natal patch, or within the natal patch if it was large. Breeding dispersal movements were often long-distance, beyond neighbouring patches, and up to 11–19 patches were overflown. Movements of at least 6–9 km across areas of unsuitable habitat occurred regularly. The number of patches visited was low (1–4) even though search costs in terms of time spent moving from one site to another were relatively low (often only a few days even for distances >10 km). Most males seemed to use a threshold tactic when choosing a patch, but returns to previously visited patches were recorded, including some cases of commuting. In conclusion, male ortolan buntings have a surprising ability to move quickly at the landscape level, and this resulted in a high connectivity of patches. We discuss our results in relation to optimal searching strategies, in particular the use of within-breeding season versus post-breeding season search, conspecific attraction and adaptive late arrival of young birds.  相似文献   

12.
The occurrence of mixed‐species foraging flocks is a worldwide phenomenon in terrestrial bird communities. Previous studies suggest that individuals participating in flocks might derive benefits in terms of improved feeding efficiency and/or reduced risk of predation. However, very little is known about how individuals establish mixed‐species flocks. Here, I provide the first experimental evidence that long‐distance calling by the willow tit, Poecile montanus, facilitates the establishment of mixed‐species flocks at a foraging patch. Observations at experimental foraging patches showed that willow tits that find a food source produce long‐distance calls, particularly when they are isolated from conspecific flockmates. The probability of long‐distance calling was negatively correlated with the number of heterospecific foraging individuals near the food source. A playback experiment confirmed that calls attract both conspecific and heterospecific members of foraging flocks. This study demonstrates that willow tits use long‐distance calls to attract conspecific flockmates to foraging patches, and these calls can also facilitate the formation of mixed‐species flocks on patches.  相似文献   

13.
Two congeneric species of grasshopper, Stenobothrus lineatus and S. stigmaticus, are compared in an analysis of genetic structure relative to their observed mobility, and to the spatial structure of their habitat networks. The species differ in their habitat requirements, the latter being rarer and more restricted to isolated patches. We tested for different patch connectivity between the two species in an analysis of genetic variance (based on allozymes) under the assumption that, besides isolation, rarity influences the genetic parameters. Between the species we found no differences in genetic structure as estimated by FST; i.e., no isolation effects and no apparent differences between the species in the potential to move between habitat fragments on either a local or regional scale were found. However, the amount of genetic variation in the more widely distributed and less xerothermic S. lineatus was significantly higher than in S. stigmaticus. Some consistency with observed philopatry within patches was found (FIS > 0), but we consider regular dispersal events of medium and especially long distance to cause the habitat linking. We conclude that the connectivity between occupied patches inferred by genetic analyses can seldom be derived from low observed life-time movements recorded by conventional marking studies. Consequences of applying observed relative to indirect dispersal estimates for the examination of grasshopper metapopulations are discussed.  相似文献   

14.
The clouded Apollo Parnassius mnemosyne is a food plant specialist with short but frequent movements between habitat patches. The short average dispersal distances suggest that the probability of colonisation of vacant patches decreases rapidly as the distance between the source and target patches increases, which means that a dense habitat network is needed for the conservation of the species. Both emigration rate and the number of immigrants varied among patches and were not affected only by isolation but also by several other patch characteristics. The model that explained most of the variation in emigration rates among patches included patch area and the number of conspecifics. The area and the population density of the target patch had significant effects on the number of arriving immigrants. Thus, the colonisation of vacant patches is dependent on these patch characteristics. Generally, emigration rates were lower and residence times longer in large patches with many conspecifics. Butterfly density was the most important single factor explaining the variation in the number of immigrants among patches, although the positive effect of the area of the target patch was also significant. As a consequence of the marked positive density dependence caused by conspecific attraction, small patches with higher than average butterfly density, receive more immigrants than could be expected based on the patch area only. Due to conspecific attraction, per capita immigration rates are higher in small than large patches. Thus, immigration may have a more significant effect on the local dynamics of small than large populations.  相似文献   

15.
We investigated the effects of forest fragmentation on golden-headed lion tamarins (Leontopithecus chrysomelas) by qualitatively and quantitatively characterizing the landscape throughout the species range, conducting surveys, and exploring predictive models of presence and absence. We identified 784 forest patches that varied in size, shape, core area, habitat composition, elevation, and distance to neighboring patches and towns. We conducted 284 interviews with local residents and 133 playback experiments in 98 patches. Results indicated a reduction in the western portions of the former species range. We tested whether L. chrysomelas presence or absence was related to the aforementioned fragmentation indices using Monte Carlo logistic regression techniques. The analysis yielded a majority of iterations with a one-term final model of which Core Area Index (percent of total area that is core) was the only significant type. Model concordance ranged between 65 and 90 percent. Area was highlighted for its potential predictive ability. Although final models for area lacked significance, their failure to reach significance was marginal and we discuss potential confounding factors weakening the term's predictive ability. We conclude that lower Core Area Index scores are useful indicators of forest patches at risk for not supporting L. chrysomelas. Taken together, our analyses of the landscape, survey results, and logistic regression modeling indicated that the L. chrysomelas metapopulation is facing substantial threat. The limited vagility of lion tamarins in nonforest matrix may lead to increasingly smaller and inbred populations subject to significant impact from edge effects and small population size. Local extinction is imminent in many forest patches in the L. chrysomelas range.  相似文献   

16.
Here, we present a review of the dataset resulting from the 11-years follow-up of Trypanosoma cruzi infection in free-ranging populations of Leontopithecus rosalia (golden lion tamarin) and Leontopithecus chrysomelas (golden-headed lion tamarin) from distinct forest fragments in Atlantic Coastal Rainforest. Additionally, we present new data regarding T. cruzi infection of small mammals (rodents and marsupials) that live in the same areas as golden lion tamarins and characterisation at discrete typing unit (DTU) level of 77 of these isolates. DTU TcII was found to exclusively infect primates, while TcI infected Didelphis aurita and lion tamarins. The majority of T. cruzi isolates derived from L. rosalia were shown to be TcII (33 out 42) Nine T. cruzi isolates displayed a TcI profile. Golden-headed lion tamarins demonstrated to be excellent reservoirs of TcII, as 24 of 26 T. cruzi isolates exhibited the TcII profile. We concluded the following: (i) the transmission cycle of T. cruzi in a same host species and forest fragment is modified over time, (ii) the infectivity competence of the golden lion tamarin population fluctuates in waves that peak every other year and (iii) both golden and golden-headed lion tamarins are able to maintain long-lasting infections by TcII and TcI.  相似文献   

17.
Gene flow and functional connectivity in the natterjack toad   总被引:6,自引:0,他引:6  
Functional connectivity is a key factor for the persistence of many specialist species in fragmented landscapes. However, connectivity estimates have rarely been validated by the observation of dispersal movements. In this study, we estimated functional connectivity of a real landscape by modelling dispersal for the endangered natterjack toad (Bufo calamita) using cost distance. Cost distance allows the evaluation of 'effective distances', which are distances corrected for the costs involved in moving between habitat patches in spatially explicit landscapes. We parameterized cost-distance models using the results of our previous experimental investigation of natterjack's movement behaviour. These model predictions (connectivity estimates from the GIS study) were then confronted to genetic-based dispersal rates between natterjack populations in the same landscape using Mantel tests. Dispersal rates between the populations were inferred from variation at six microsatellite loci. Based on these results, we conclude that matrix structure has a strong effect on dispersal rates. Moreover, we found that cost distances generated by habitat preferences explained dispersal rates better than did the Euclidian distances, or the connectivity estimate based on patch-specific resistances (patch viscosity). This study is a clear example of how landscape genetics can validate operational functional connectivity estimates.  相似文献   

18.
Some birds use social cues, such as the presence of conspecifics, when selecting breeding habitat. This phenomenon, known as conspecific attraction, has been well‐documented in migratory species, but has not been assessed for resident species of birds. We used Dupont's Larks (Chersophilus duponti) as a model species to determine if conspecific attraction plays a role in habitat selection by resident species of birds. At our study site in Soria province in central Spain, we monitored two potential habitat patches and one managed site where management actions had provided apparently suitable habitat. At each site, we broadcast recordings of the songs and calls of male Dupont's Larks, and monitored their presence during the breeding season and dispersal period in 2018 using automated recorders and field surveys. No birds were attracted to our study sites. Our results suggest that management of patches of suitable habitat should occur close to areas (within 1 km) already occupied by Dupont's Larks to encourage natural colonization because, based on our results, playback of conspecific vocalizations may not attract the species to new breeding areas. However, additional studies are needed before drawing conclusions about the effectiveness of conspecific attraction for this and other resident species of birds.  相似文献   

19.
The movement rules used by an individual determine both its survival and dispersal success. Here, we develop a simple model that links inter-patch movement behaviour with population dynamics in order to explore how individual dispersal behaviour influences not only its dispersal and survival, but also the population's rate of range expansion. Whereas dispersers are most likely to survive when they follow nearly straight lines and rapidly orient movement towards a non-natal patch, the most rapid rates of range expansion are obtained for trajectories in which individuals delay biasing their movement towards a non-natal patch. This result is robust to the spatial structure of the landscape. Importantly, in a set of evolutionary simulations, we also demonstrate that the movement strategy that evolves at an expanding front is much closer to that maximizing the rate of range expansion than that which maximizes the survival of dispersers. Our results suggest that if one of our conservation goals is the facilitation of range-shifting, then current indices of connectivity need to be complemented by the development and utilization of new indices providing a measure of the ease with which a species spreads across a landscape.  相似文献   

20.
Cayuela  Hugo  Grolet  Odile  Joly  Pierre 《Oecologia》2018,188(4):1069-1080

Dispersal is one of the main processes that determine community structure. Individuals make dispersal decisions according to environmental and/or social cues that reflect the fitness prospects in a given patch. The presence and abundance of heterospecifics within the same ecological guild, and/or their breeding success, may act as public information that influences movement decisions. To date, most studies investigating the role of heterospecific attraction have focused on habitat choice, using both experimental and correlational approaches. The present study is the first to examine how long-term variation in heterospecific density in breeding patches may affect dispersal patterns in spatially structured populations. We investigate how the dispersal decisions of the great crested newt (Triturus cristatus) are related to the variable density of two other newt species, the alpine newt (Ichthyosaura alpestris) and the palmate newt (Lissotriton helveticus). To examine this issue, we used capture–recapture data collected in an experimental pond network over a 20-year period. The results revealed that the great crested newt’s dispersal is context dependent and is affected by variation in heterospecific density: individuals were less likely to emigrate from ponds with high heterospecific density and were more likely to immigrate to ponds with high heterospecific density. These findings suggest that individuals adjust their dispersal decisions at least partly based on public information provided by heterospecifics. This mechanism may play a critical role in the dynamics of spatially structured populations and community functioning.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号