首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tenth fibronectin type III (FN3) domain of human fibronectin (FNfn10), a prototype of the ubiquitous FN3 domain, is a small, monomeric beta-sandwich protein. In this study, we have bisected FNfn10 in each loop to generate a total of six fragment pairs. We found that fragment pairs bisected at multiple loops of FNfn10 show complementation in vivo as tested with a yeast two-hybrid system. The dissociation constant of these fragment pairs determined in vitro were as low as 3 nM, resulting in one of the tightest fragment complementation systems reported so far. Furthermore, we show that the affinity of fragment complementation is correlated with the stability of the uncut parent protein. Exploring this correlation, we screened a yeast two-hybrid library of one fragment and identified mutations that suppress the effect of a destabilizing mutation in the other fragment. One of the identified mutations significantly increased the stability of the uncut wild-type protein, proving that fragment complementation can be used as a novel strategy for the selection of proteins with enhanced stability.  相似文献   

2.
The expression of recombinant proteins incorporated into the cell wall of Saccharomyces cerevisiae (yeast surface display) is an important tool for protein engineering and library screening applications. In this review, we discuss the state-of-the-art yeast display techniques used for stability engineering of proteins including antibody fragments and immunoglobulin-like molecules. The paper discusses assets and drawbacks of stability engineering using the correlation between expression density on the yeast surface and thermal stability with respect to the quality control system in yeast. Additionally, strategies based on heat incubation of surface displayed protein libraries for selection of stabilized variants are reported including a recently developed method that allows stabilization of proteins of already high intrinsic thermal stability like IgG1-Fc.  相似文献   

3.
Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the structural sequence considerably improves the classification accuracy. The two fragment-based sequences perform better than the secondary-structure sequence but not well enough at this stage to be a viable alternative to more computationally intensive methods based on protein structure alignment.  相似文献   

4.
Therapeutic antibody engineering by high efficiency cell screening   总被引:1,自引:0,他引:1  
In recent years, several cell-based screening technologies for the isolation of antibodies with prescribed properties emerged. They rely on the multi-copy display of antibodies or antibody fragments on a cell surface in functional form followed by high through put screening and isolation of cell clones that carry an antibody variant with the desired affinity, specificity, and stability. Particularly yeast surface display in combination with high-throughput fluorescence-activated cell sorting has proven successful in the last fifteen years as a very powerful technology that has some advantages over classical generation of monoclonals using the hybridoma technology or bacteriophage-based antibody display and screening. Cell-based screening harbours the benefit of single-cell online and real-time analysis and characterisation of individual library candidates. Moreover, when using eukaryotic expression hosts, intrinsic quality control machineries for proper protein folding and stability exist that allow for co-selection of high-level expression and stability simultaneously to the binding functionality. Recently, promising technologies emerged that directly rely on antibody display on higher eukaryotic cell lines using lentiviral transfection or direct screening on B-cells. The combination of immunisation, B-cell screening and next generation sequencing may open new avenues for the isolation of therapeutic antibodies with prescribed physicochemical and functional characteristics.  相似文献   

5.
A functional hetero-oligomeric protein was, for the first time, displayed on the yeast cell surface. A hetero-oligomeric Fab fragment of the catalytic antibody 6D9 can hydrolyze a non-bioactive chloramphenicol monoester derivative to produce chloramphenicol. The gene encoding the light chain of the Fab fragment of 6D9 was expressed with the tandemly-linked C-terminal half of alpha-agglutinin. At the same time, the gene encoding the Fd fragment of the heavy chain of the Fab fragment was expressed as a secretion protein. The combined Fab fragment displayed and associated on the yeast cell surface had an intermolecular disulfide linkage between the light and heavy chains. This protein fragment catalyzed the hydrolysis of a chloramphenicol monoester derivative and exhibited high stability in binding with a transition-state analog (TSA). The catalytic reaction was also inhibited by the TSA. The successful display of a functional hetero-oligomeric catalytic antibody provides a useful model for the display of hetero-oligomeric proteins and enzymes.  相似文献   

6.
Fibronectin (FN) is a multidomain extracellular matrix protein that induces attachment and chemotactic migration of fibroblastic cells. In this study we analyzed the molecular determinants involved in the FN-induced chemotactic migration of normal and SV40-transformed 3T3 cells. Two different monoclonal antibodies to the cell-binding site of FN blocked chemotaxis to a 140-kD FN fragment (Ca 140) containing the cell-binding domain. A monoclonal antibody to a determinant distant from the cell-binding site did not affect chemotaxis. A synthetic tetrapeptide, RGDS, which represents the major cell-attachment sequence, was able to compete with FN and the Ca 140 fragment in chemotaxis assays, but this peptide itself had no significant chemotactic activity. A larger peptide encompassing this sequence, GRGDSP, was chemotactic, while the peptide GRGESP, where a glutamic acid residue was substituted for aspartic acid, was inactive. Chemotactic migration could be prevented in a dose-dependent manner by a rabbit polyclonal antiserum to a 140-kD cell surface FN receptor. This antibody was more effective on normal than on transformed 3T3 cells. Neither the anti-FN receptor antiserum nor a monoclonal antibody to the cell-binding site of FN blocked migration induced by another potent chemoattractant, platelet-derived growth factor. These data indicate that FN-induced chemotaxis of 3T3 and SV3T3 cells is mediated via the RGDS cell-attachment site of FN and the 140-kD cell surface FN receptor. The interaction is specific and can be altered by transformation.  相似文献   

7.
脂肪酶是一种广泛应用的水解酶类。脂肪酶的表面展示技术不仅是脂肪酶蛋白质工程中一种有效的高通量筛选方法,而且展示的脂肪酶与自由酶相比具备更高的温度稳定性、有机溶剂稳定性等优点,其作为全细胞催化剂与传统的固定化脂肪酶相比也具备诸多优点。脂肪酶表面展示的宿主包括噬菌体、细菌以及酵母等,本文将分别介绍这三种宿主中脂肪酶表面展示的概况以及其作为高通量筛选和全细胞等方面的应用。  相似文献   

8.
9.
含有LRR基序的胡萝卜抗冻蛋白虽然具有抗冻活性,但却属于植物PGIP家族。胡萝卜抗冻蛋白虽然在氨基酸序列上属于PGIP家族,但却失去了抑制外源真菌的PGase活性,并且获得了一个重要的活性——抑制冰晶的生长和重结晶。胡萝卜抗冻蛋白的这种活性的变化一直被认为是由于植物自身长期进化的结果,并认为最初的DcAFP也应当具有抑制PGase的活性。采用酵母双杂交来分析DcAFP是否还拥有PGIP的活性。通过RT-PCR克隆了真菌互格链格孢(Alternaria alternata)的PGase的cDNA,然后分别将PGase与DcAFP的完整编码框构建成酵母双杂交的捕获质粒和诱饵质粒,经过预实验表明两者都不能产生自激活作用,酵母双杂交实验表明两者不能产生相互作用,说明DcAFP完全失去了抑制PGase的活性,这种活性的丢失是由于位于6-螺旋上凹面的LRR基序中非保守的氨基酸残基发生了大量的碱性氨基酸的取代,导致结合的凹面从负电荷富集区变成了正电荷表面,从而不能通过静电作用与PGase的正电荷表面相结合。  相似文献   

10.
We have constructed IgG1-Fc scaffolds with increased thermal stability by directed evolution and yeast surface display. As a basis a new selection strategy that allowed the application of yeast surface display for screening of stabilizing mutations in proteins of already high intrinsic thermal stability and Tm-values up to 85 °C was developed. Besides library construction by error prone PCR, strong heat stress at 79 °C for 10 min and screening for well-folded proteins by FACS, sorting rounds had to include an efficient plasmid DNA isolation step for amplification and further transfection. We describe the successful application of this experimental setup for selection of 17 single, double and triple IgG1-Fc variants of increased thermal stability after four selection rounds. The recombinantly produced homodimeric proteins showed a wild-type-like elution profile in size exclusion chromatography as well as content of secondary structures. Moreover, the kinetics of binding of FcRn, CD16a and Protein A to the engineered Fc-molecules was very similar to the wild-type protein. These data clearly demonstrate the importance and efficacy of the presented strategy for selection of stabilizing mutations in proteins of high intrinsic stability within reasonable time.  相似文献   

11.
The 10th human fibronectin type III domain ((10)Fn3) is one of several protein scaffolds used to design and select families of proteins that bind with high affinity and specificity to macromolecular targets. To date, the highest affinity (10)Fn3 variants have been selected by mRNA display of libraries generated by randomizing all three complementarity-determining region -like loops of the (10)Fn3 scaffold. The sub-nanomolar affinities of such antibody mimics have been attributed to the extremely large size of the library accessible by mRNA display (10(12) unique sequences). Here we describe the selection and affinity maturation of (10)Fn3-based antibody mimics with dissociation constants as low as 350 pM selected from significantly smaller libraries (10(7)-10(9) different sequences), which were constructed by randomizing only 14 (10)Fn3 residues. The finding that two adjacent loops in human (10)Fn3 provide a large enough variable surface area to select high-affinity antibody mimics is significant because a smaller deviation from wild-type (10)Fn3 sequence is associated with a higher stability of selected antibody mimics. Our results also demonstrate the utility of an affinity-maturation strategy that led to a 340-fold improvement in affinity by maximizing sampling of sequence space close to the original selected antibody mimic. A striking feature of the highest affinity antibody mimics selected against lysozyme is a pair of cysteines on adjacent loops, in positions 28 and 77, which are critical for the affinity of the (10)Fn3 variant for its target and are close enough to form a disulfide bond. The selection of this cysteine pair is structurally analogous to the natural evolution of disulfide bonds found in new antigen receptors of cartilaginous fish and in camelid heavy-chain variable domains. We propose that future library designs incorporating such an interloop disulfide will further facilitate the selection of high-affinity, highly stable antibody mimics from libraries accessible to phage and yeast surface display methods.  相似文献   

12.
Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full‐length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full‐length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark‐derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A‐GFP system. Yeast library screening of full‐length vNAR variants which were detected via GFP expression yielded the same high‐affinity binder that had previously been isolated by our group using the conventional epitope tag‐based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost‐friendly alternative to conventional epitope tag detections.  相似文献   

13.
Yeast surface display, a well‐established technology for protein analysis and engineering, involves expressing a protein of interest as a genetic fusion to either the N‐ or C‐terminus of the yeast Aga2p mating protein. Historically, yeast‐displayed protein variants are flanked by peptide epitope tags that enable flow cytometric measurement of construct expression using fluorescent primary or secondary antibodies. Here, we built upon this technology to develop a new yeast display strategy that comprises fusion of two different proteins to Aga2p, one to the N‐terminus and one to the C‐terminus. This approach allows an antibody fragment, ligand, or receptor to be directly coupled to expression of a fluorescent protein readout, eliminating the need for antibody‐staining of epitope tags to quantify yeast protein expression levels. We show that this system simplifies quantification of protein‐protein binding interactions measured on the yeast cell surface. Moreover, we show that this system facilitates co‐expression of a bioconjugation enzyme and its corresponding peptide substrate on the same Aga2p construct, enabling enzyme expression and catalytic activity to be measured on the surface of yeast.  相似文献   

14.
Developability assessment of therapeutic antibody candidates assists drug discovery by enabling early identification of undesirable instabilities. Rapid chemical stability screening of antibody variants can accelerate the identification of potential solutions. We describe here the development of a high-throughput assay to characterize asparagine deamidation. We applied the assay to identify a mutation that unexpectedly stabilizes a critical asparagine. Ninety antibody variants were incubated under thermal stress in order to induce deamidation and screened for both affinity and total binding capacity. Surprisingly, a mutation five residues downstream from the unstable asparagine greatly reduced deamidation. Detailed assessment by LC-MS analysis confirmed the predicted improvement. This work describes both a high-throughput method for antibody stability screening during the early stages of antibody discovery and highlights the value of broad searches of antibody sequence space.  相似文献   

15.
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.  相似文献   

16.
PUF proteins bind mRNAs and regulate their translation, stability, and localization. Each PUF protein binds a selective group of mRNAs, enabling their coordinate control. We focus here on the specificity of Puf2p and Puf1p of Saccharomyces cerevisiae, which copurify with overlapping groups of mRNAs. We applied an RNA-adapted version of the DRIM algorithm to identify putative binding sequences for both proteins. We first identified a novel motif in the 3' UTRs of mRNAs previously shown to associate with Puf2p. This motif consisted of two UAAU tetranucleotides separated by a 3-nt linker sequence, which we refer to as the dual UAAU motif. The dual UAAU motif was necessary for binding to Puf2p, as judged by gel shift, yeast three-hybrid, and coimmunoprecipitation from yeast lysates. The UAAU tetranucleotides are required for optimal binding, while the identity and length of the linker sequences are less critical. Puf1p also binds the dual UAAU sequence, consistent with the prior observation that it associates with similar populations of mRNAs. In contrast, three other canonical yeast PUF proteins fail to bind the Puf2p recognition site. The dual UAAU motif is distinct from previously known PUF protein binding sites, which invariably possess a UGU trinucleotide. This study expands the repertoire of cis elements bound by PUF proteins and suggests new modes by which PUF proteins recognize their mRNA targets.  相似文献   

17.
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.  相似文献   

18.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

19.
The RNA recognition motif (RRM) is the most common RNA-binding domain in eukaryotes. Differences in RRM sequences dictate, in part, both RNA and protein-binding specificities and affinities. We used a deep mutational scanning approach to study the sequence-function relationship of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein (Pab1). By scoring the activity of more than 100,000 unique Pab1 variants, including 1246 with single amino acid substitutions, we delineated the mutational constraints on each residue. Clustering of residues with similar mutational patterns reveals three major classes, composed principally of RNA-binding residues, of hydrophobic core residues, and of the remaining residues. The first class also includes a highly conserved residue not involved in RNA binding, G150, which can be mutated to destabilize Pab1. A comparison of the mutational sensitivity of yeast Pab1 residues to their evolutionary conservation reveals that most residues tolerate more substitutions than are present in the natural sequences, although other residues that tolerate fewer substitutions may point to specialized functions in yeast. An analysis of ∼40,000 double mutants indicates a preference for a short distance between two mutations that display an epistatic interaction. As examples of interactions, the mutations N139T, N139S, and I157L suppress other mutations that interfere with RNA binding and protein stability. Overall, this study demonstrates that living cells can be subjected to a single assay to analyze hundreds of thousands of protein variants in parallel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号