首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Zhou L  Marzluf GA 《Biochemistry》1999,38(14):4335-4341
Multiple GATA factors, zinc finger DNA binding proteins that recognize consensus GATA elements, exist in Neurospora crassa. One of them, SRE, is involved in controlling the iron metabolic pathway of N. crassa. In N. crassa, iron transport is mediated by a number of small cyclic peptides, known as siderophores. The siderophore synthesis pathway is negatively regulated by SRE; a loss-of-function sre mutant strain showed partial constitutive synthesis of siderophore. In the research presented here, the negative function of SRE was further confirmed by a heterokaryon test and by gene complementation. SRE was expressed as a GST fusion protein. In vitro EMSA revealed that SRE binds specifically to DNA molecules containing GATA sequence elements. Autoregulation of sre gene expression appears possible because the sre gene promoter itself contains GATA sequences. Mutations were introduced into sre that lead to amino acid substitutions in each of the zinc fingers that will disrupt their function. In vitro EMSA revealed that both N-terminal and C-terminal zinc fingers of SRE are involved in DNA binding. This feature is different from that found with the vertebrate two zinc finger GATA factors. Invivo tests, accomplished by transforming the mutant sre genes into sre rip mutant, showed that SRE with mutations in either or both zinc fingers still maintained its function under low-iron conditions. In contrast, these mutant SRE proteins fail to function under high-iron conditions. Our results predict the presence of other positive or negative regulators of the siderophore synthetic pathway.  相似文献   

4.
5.
The GATA family of transcription factors in Arabidopsis and rice   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

6.
7.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

8.
The DNA binding domain of GATA-1 consists of two adjacent homologous zinc fingers, of which only the C-terminal finger binds DNA independently. Solution structure studies have shown that the DNA is bent by about 15 degrees in the complex formed with the single C-terminal finger of GATA-1. The N-terminal finger stabilizes DNA binding at some sites. To determine whether it contributes to DNA bending, we have performed circular permutation DNA bending experiments with a variety of DNA-binding sites recognized by GATA-1. By using a series of full-length GATA-1, double zinc finger, and single C-terminal finger constructs, we show that GATA-1 bends DNA by about 24 degrees, irrespective of the DNA-binding site. We propose that the N- and C-terminal fingers of GATA-1 adopt different orientations when bound to different cognate DNA sites. Furthermore, we characterize circular permutation bending artifacts arising from the reduced gel mobility of the protein-DNA complexes.  相似文献   

9.
10.
11.
12.
13.
14.
The ADR1 protein recognizes a six base-pair consensus DNA sequence using two zinc fingers and an adjacent accessory motif. Kinetic measurements were performed on the DNA-binding domain of ADR1 using surface plasmon resonance. Binding by ADR1 was characterized to two known native binding sequences from the ADH2 and CTA1 promoter regions, which differ in two of the six consensus positions. In addition, non-specific binding by ADR1 to a random DNA sequence was measured. ADR1 binds the native sites with nanomolar affinities. Remarkably, ADR1 binds non-specific DNA with affinities only approximately tenfold lower than the native sequences. The specific and non-specific binding affinities are conferred mainly by differences in the association phase of DNA binding. The association rate for the complex is strongly influenced by the proximal accessory region, while the dissociation reaction and specificity of binding are controlled by the two zinc fingers. Binding kinetics of two ADR1 mutants was also examined. ADR1 containing an R91K mutation in the accessory region bound with similar affinity to wild-type, but with slightly less sequence specificity. The R91K mutation was observed to increase binding affinity to a suboptimal sequence by decreasing the complex dissociation rate. L146H, a change-of-specificity mutation at the +3 position of the second zinc finger, bound its preferred sequence with a slightly higher affinity than wild-type. The L146H mutant indicates that beneficial protein-DNA contacts provide similar levels of stabilization to the complex, whether they are hydrogen-bonding or van der Waals interactions.  相似文献   

15.
The transactivator Staf, which contains seven contiguous zinc fingers of the C2-H2 type, exerts its effects on gene expression by binding to specific targets in vertebrate small nuclear RNA (snRNA) and snRNA-type gene promoters. Here, we have investigated the interaction of the Staf zinc finger domain with the optimal Xenopus selenocysteine tRNA (xtRNASec) and human U6 snRNA (hU6) Staf motifs. Generation of a series of polypeptides containing increasing numbers of Staf zinc fingers tested in binding assays, by interference techniques and by binding site selection served to elucidate the mode of interaction between the zinc fingers and the Staf motifs. Our results provide strong evidence that zinc fingers 3–6 represent the minimal zinc finger region for high affinity binding to Staf motifs. Furthermore, we show that the binding of Staf is achieved through a broad spectrum of close contacts between zinc fingers 1–6 and xtRNASec or optimal sites or between zinc fingers 3–6 and the hU6 site. Extensive DNA major groove contacts contribute to the interaction with Staf that associates more closely with the non-template than with the template strand. Based on these findings and the structural information provided by the solved structures of other zinc finger–DNA complexes, we propose a model for the interaction between Staf zinc fingers and the xtRNASec, optimal and hU6 sites.  相似文献   

16.
One simple and widespread method to create engineered zinc fingers targeting the desired DNA sequences is to modularly assemble multiple finger modules pre-selected to recognize each DNA triplet. However, it has become known that a sufficient DNA binding affinity is not always obtained. In order to create successful zinc finger proteins, it is important to understand the context-dependent contribution of each finger module to the DNA binding ability of the assembled zinc finger proteins. Here, we have created finger-deletion mutants of zinc finger proteins and examined the DNA bindings of these zinc fingers to clarify the contributions of each finger module. Our results indicate that not only a positive cooperativity but also a context-dependent reduction in the DNA binding activity can be induced by assembling zinc finger modules.  相似文献   

17.
DNA methylation is an epigenetic mark that is essential for the development of mammals; it is frequently altered in diseases ranging from cancer to psychiatric disorders. The presence of DNA methylation attracts specialized methyl-DNA binding factors that can then recruit chromatin modifiers. These methyl-CpG binding proteins (MBPs) have key biological roles and can be classified into three structural families: methyl-CpG binding domain (MBD), zinc finger, and SET and RING finger-associated (SRA) domain. The structures of MBD and SRA proteins bound to methylated DNA have been previously determined and shown to exhibit two very different modes of methylated DNA recognition. The last piece of the puzzle has been recently revealed by the structural resolution of two different zinc finger proteins, Kaiso and ZFP57, in complex with methylated DNA. These structures show that the two methyl-CpG binding zinc finger proteins adopt differential methyl-CpG binding modes. Nonetheless, there are similarities with the MBD proteins suggesting some commonalities in methyl-CpG recognition across the various MBP domains. These fresh insights have consequences for the analysis of the many other zinc finger proteins present in the genome, and for the biology of methyl-CpG binding zinc finger proteins.  相似文献   

18.
The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 Å crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号