首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor (iGluR). We have solved the crystal structure of the ligand-binding core of NpGluR0 in complex with l-glutamate at a resolution of 2.1 Å. The structure exhibits a noncanonical ligand interaction and two distinct subunit interfaces. The side-chain guanidium group of Arg80 forms a salt bridge with the γ-carboxyl group of bound l-glutamate: in GluR0 from Synechocystis (SGluR0) and other iGluRs, the equivalent residues are Asn or Thr, which cannot form a similar interaction. We suggest that the local positively charged environment and the steric constraint created by Arg80 mediate the selectivity of l-glutamate binding by preventing the binding of positively charged and hydrophobic amino acids. In addition, the NpGluR0 ligand-binding core forms a new subunit interface in which the two protomers are arranged differently than the known iGluR and SGluR0 dimer interfaces. The significance of there being two different dimer interfaces was investigated using analytical ultracentrifugation analysis.  相似文献   

2.
Esterases are one of the most common enzymes and are involved in diverse cellular functions. ybfF protein from Escherichia coli (Ec_ybfF) belongs to the esterase family for the large substrates, palmitoyl coenzyme A and malonyl coenzyme A, which are important cellular intermediates for energy conversion and biomolecular synthesis. To obtain molecular information on ybfF esterase, which is found in a wide range of microorganisms, we elucidated the crystal structures of Ec_ybfF in complexes with small molecules at resolutions of 1.1 and 1.68 Å, respectively. The structure of Ec_ybfF is composed of a globular α/β hydrolase domain with a three-helical bundle cap, which is linked by a kinked helix to the α/β hydrolase domain. It contains a catalytic tetrad of Ser-His-Asp-Ser with the first Ser acting as a nucleophile. The unique spatial arrangement and orientation of the helical cap with respect to the α/β hydrolase domain form a substrate-binding crevice for large substrates. The helical cap is also directly involved in catalysis by providing a substrate anchor, viz., the conserved residues of Arg123 and Tyr208. The high-resolution structure of Ec_ybfF shows that the inserted helical bundle structure and its spatial orientation with respect to the α/β hydrolase domain are critical for creating a large inner space and constituting a specific active site, thereby providing the broad substrate spectrum toward large biomolecules.  相似文献   

3.
A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of l-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pKa to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.  相似文献   

4.
l-Alanine dehydrogenase from Mycobacterium tuberculosis catalyzes the NADH-dependent reversible conversion of pyruvate and ammonia to l-alanine. Expression of the gene coding for this enzyme is up-regulated in the persistent phase of the organism, and alanine dehydrogenase is therefore a potential target for pathogen control by antibacterial compounds. We have determined the crystal structures of the apo- and holo-forms of the enzyme to 2.3 and 2.0 Å resolution, respectively. The enzyme forms a hexamer of identical subunits, with the NAD-binding domains building up the core of the molecule and the substrate-binding domains located at the apical positions of the hexamer. Coenzyme binding stabilizes a closed conformation where the substrate-binding domains are rotated by about 16° toward the dinucleotide-binding domains, compared to the open structure of the apo-enzyme. In the structure of the abortive ternary complex with NAD+ and pyruvate, the substrates are suitably positioned for hydride transfer between the nicotinamide ring and the C2 carbon atom of the substrate. The approach of the nucleophiles water and ammonia to pyruvate or the reaction intermediate iminopyruvate, respectively, is, however, only possible through conformational changes that make the substrate binding site more accessible. The crystal structures identified the conserved active-site residues His96 and Asp270 as potential acid/base catalysts in the reaction. Amino acid replacements of these residues by site-directed mutagenesis led to inactive mutants, further emphasizing their essential roles in the enzymatic reaction mechanism.  相似文献   

5.
We used a glutamate oxidase (GluOx)-immobilized glass coverslip for reducing diffusional blur and improving the temporal resolution of visualizing l-glutamate fluxes in acute brain slices. The immobilization of GluOx on an avidin modified glass coverslips was achieved by optimized the amine coupling method. The GluOx coverslip was applied to the imaging of l-glutamate fluxes in acute hippocampal slices under hypoxia and KCl stimulation. A slice from mouse brain was loaded with horseradish peroxidase (HRP) and substrate DA-64, and placed on the GluOx coverslip for stimulation. The regional distribution of hypoxia-induced l-glutamate fluxes was analyzed. The maximum flux at 3 min after the onset of hypoxia increased in the order CA1 > CA3 > DG. The time-courses of the l-glutamate fluxes at CA1 and DG were biphasic, while that at CA3 decreased monotonously. The KCl-stimulated release of l-glutamate in the presence of the dl-TBOA uptake inhibitor was imaged. While no noticeable change was observed in the absence of dl-TBOA, l-glutamate fluxes in the presence of the inhibitor increased in the order CA1 > CA3 > DG, reflecting the effect of uptake processes. The present approach suppressed diffusional blur of the glutamate signal and improved the temporal resolution as compared with the BSA-HRP membrane method described earlier.  相似文献   

6.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

7.
d-Alanylation of lipoteichoic acids modulates the surface charge and ligand binding of the Gram-positive cell wall. Disruption of the bacterial dlt operon involved in teichoic acid alanylation, as well as inhibition of the DltA (d-alanyl carrier protein ligase) protein, has been shown to render the bacterium more susceptible to conventional antibiotics and host defense responses. The DltA catalyzes the adenylation and thiolation reactions of d-alanine. This enzyme belongs to a superfamily of AMP-forming domains such as the ubiquitous acetyl-coenzyme A synthetase. We have determined the 1.9-Å-resolution crystal structure of a DltA protein from Bacillus cereus in complex with ATP. This structure sheds light on the geometry of the bound ATP. The invariant catalytic residue Lys492 appears to be mobile, suggesting a molecular mechanism of catalysis for this superfamily of enzymes. Specific roles are also revealed for two other invariant residues: the divalent cation-stabilizing Glu298 and the β-phosphate-interacting Arg397. Mutant proteins with a glutamine substitution at position 298 or 397 are inactive.  相似文献   

8.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   

9.
Pseudomonas stutzeril-rhamnose isomerase (P. stutzeri L-RhI) can efficiently catalyze the isomerization between various aldoses and ketoses, showing a broad substrate specificity compared to L-RhI from Escherichia coli (E. coli L-RhI). To understand the relationship between structure and substrate specificity, the crystal structures of P. stutzeri L-RhI alone and in complexes with l-rhamnose and d-allose which has different configurations of C4 and C5 from l-rhamnose, were determined at a resolution of 2.0 Å, 1.97 Å, and 1.97 Å, respectively. P. stutzeri L-RhI has a large domain with a (β/α)8 barrel fold and an additional small domain composed of seven α-helices, forming a homo tetramer, as found in E. coli L-RhI and d-xylose isomerases (D-XIs) from various microorganisms. The β1-α1 loop (Gly60-Arg76) of P. stutzeri L-RhI is involved in the substrate binding of a neighbouring molecule, as found in D-XIs, while in E. coli L-RhI, the corresponding β1-α1 loop is extended (Asp52-Arg78) and covers the substrate-binding site of the same molecule. The complex structures of P. stutzeri L-RhI with l-rhamnose and d-allose show that both substrates are nicely fitted to the substrate -binding site. The part of the substrate-binding site interacting with the substrate at the 1, 2, and 3 positions is equivalent to E. coli L-RhI, and the other part interacting with the 4, 5, and 6 positions is similar to D-XI. In E. coli L-RhI, the β1-α1 loop creates an unique hydrophobic pocket at the the 4, 5, and 6 positions, leading to the strictly recognition of l-rhamnose as the most suitable substrate, while in P. stutzeri L-RhI, there is no corresponding hydrophobic pocket where Phe66 from a neighbouring molecule merely forms hydrophobic interactions with the substrate, leading to the loose substrate recognition at the 4, 5, and 6 positions.  相似文献   

10.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

11.
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-glutamate and folyl-poly-γ-glutamates, respectively. During the past years, tremendous efforts have been made toward the structural analysis of GCPII. Crystal structures of GCPII in complex with various ligands have provided insight into the binding of these ligands, particularly to the S1′ site of the enzyme. In this article, we have extended structural characterization of GCPII to its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1′ sites of the enzyme. To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide analogs of folyl-γ-glutamate, aspartyl-glutamate, and γ-glutamyl-glutamate, refined at 1.50, 1.60, and 1.67 Å resolution, respectively. The S1 pocket of GCPII could be accurately defined and analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally, observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII affinity toward different inhibitors and modulates GCPII substrate specificity. The biochemical experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1 position, also included in this report, further complement and extend conclusions derived from the structural analysis. The data described here form an a solid foundation for the structurally aided design of novel low-molecular-weight GCPII inhibitors and imaging agents.  相似文献   

12.
Lactose permease in Escherichia coli (LacY) transports both anomeric states of disaccharides but has greater affinity for α-sugars. Molecular dynamics (MD) simulations are used to probe the protein-sugar interactions, binding structures, and global protein motions in response to sugar binding by investigating LacY (the experimental mutant and wild-type) embedded in a fully hydrated lipid bilayer. A total of 12 MD simulations of 20-25 ns each with β(α)-d-galactopyranosyl-(1,1)-β-d-galactopyranoside (ββ-(Galp)2) and αβ-(Galp)2 result in binding conformational families that depend on the anomeric state of the sugar. Both sugars strongly interact with Glu126 and αβ-(Galp)2 has a greater affinity to this residue. Binding conformations are also seen that involve protein residues not observed in the crystal structure, as well as those involved in the proton translocation (Phe118, Asn119, Asn240, His322, Glu325, and Tyr350). Common to nearly all protein-sugar structures, water acts as a hydrogen bond bridge between the disaccharide and protein. The average binding energy is more attractive for αβ-(Galp)2 than ββ-(Galp)2, i.e. −10.7(±0.7) and −3.1(±1.0) kcal/mol, respectively. Of the 12 helices in LacY, helix-IV is the least stable with ββ-(Galp)2 binding resulting in larger distortion than αβ-(Galp)2.  相似文献   

13.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

14.
Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 Å. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 Å and 2.6 Å, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.  相似文献   

15.
γ-Glutamyltranspeptidase (GGT) catalyzes the cleavage of such γ-glutamyl compounds as glutathione, and the transfer of their γ-glutamyl group to water or to other amino acids and peptides. GGT is involved in a number of biological phenomena such as drug resistance and metastasis of cancer cells by detoxification of xenobiotics. Azaserine and acivicin are classical and irreversible inhibitors of GGT, but their binding sites and the inhibition mechanisms remain to be defined. We have determined the crystal structures of GGT from Escherichia coli in complex with azaserine and acivicin at 1.65 Å resolution. Both inhibitors are bound to GGT at its substrate-binding pocket in a manner similar to that observed previously with the γ-glutamyl-enzyme intermediate. They form a covalent bond with the Oγ atom of Thr391, the catalytic residue of GGT. Their α-carboxy and α-amino groups are recognized by extensive hydrogen bonding and charge interactions with the residues that are conserved among GGT orthologs. The two amido nitrogen atoms of Gly483 and Gly484, which form the oxyanion hole, interact with the inhibitors directly or via a water molecule. Notably, in the azaserine complex the carbon atom that forms a covalent bond with Thr391 is sp3-hybridized, suggesting that the carbonyl of azaserine is attacked by Thr391 to form a tetrahedral intermediate, which is stabilized by the oxyanion hole. Furthermore, when acivicin is bound to GGT, a migration of the single and double bonds occurs in its dihydroisoxazole ring. The structural characteristics presented here imply that the unprecedented binding modes of azaserine and acivicin are conserved in all GGTs from bacteria to mammals and give a new insight into the inhibition mechanism of glutamine amidotransferases by these glutamine antagonists.  相似文献   

16.
Acetabularia rhodopsin (AR) is a rhodopsin from the marine plant Acetabularia acetabulum. The opsin-encoding gene from A. acetabulum, ARII, was cloned and found to be novel but homologous to that reported previously. ARII is a light-driven proton pump, as demonstrated by the existence of a photo-induced current through Xenopus oocytes expressing ARII. The photochemical reaction of ARII prepared by cell-free protein synthesis was similar to that of bacteriorhodopsin (BR), except for the lack of light-dark adaptation and the different proton release and uptake sequence. The crystal structure determined at 3.2 Å resolution is the first structure of a eukaryotic member of the microbial rhodopsin family. The structure of ARII is similar to that of BR. From the cytoplasmic side to the extracellular side of the proton transfer pathway in ARII, Asp92, a Schiff base, Asp207, Asp81, Arg78, Glu199, and Ser189 are arranged in positions similar to those of the corresponding residues directly involved in proton transfer by BR. The side-chain carboxyl group of Asp92 appears to interact with the sulfhydryl group of Cys218, which is unique to ARII and corresponds to Leu223 of BR and to Asp217 of Anabaena sensory rhodopsin. The orientation of the Arg78 side chain is opposite to the corresponding Arg82 of BR. The putative absence of water molecules around Glu199 and Arg78 may disrupt the formation of the low-barrier hydrogen bond at Glu199, resulting in the “late proton release”.  相似文献   

17.
We report on a 13C NMR and a single-crystal X-ray diffraction study of N-(1-deoxy-β-d-fructopyranos-1-yl)-N-allylaniline (d-fructose-N-allylaniline). In solution, an equilibrium of α-pyranose, β-pyranose, α-furanose, β-furanose, and acyclic keto tautomers of the carbohydrate was detected in the following respective proportions: 2.2%, 47.4%, 4.5%, 33.6%, and 12.3%. In the crystalline state, the compound exists exclusively as the β-pyranose form, in the normal 2C5 chair conformation. Bond lengths and valence angles compare well with the average values from a number of β-fructopyranose derivatives. The structure displays two unusual features for this class of compounds. First, the molecule assumes an eclipsed conformation around the C1-C2 bond, apparently stabilized by an intramolecular O2-H···N hydrogen bond. Second, the O3, O4, and O5 hydroxyl groups are involved in an intermolecular hydrogen bonding, which forms 12-membered homodromic cycles. In the cycles, each determined hydrogen atom site is half occupied, possibly due to the ···H-O···H-O··· ? ···O-H···O-H··· flip-flop type disorder.  相似文献   

18.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   

19.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

20.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号